The official homepage of the COCO-Stuff dataset.

Overview

The COCO-Stuff dataset

Holger Caesar, Jasper Uijlings, Vittorio Ferrari

COCO-Stuff example annotations

Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augments all 164K images of the popular COCO [2] dataset with pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning.

Overview

Highlights

  • 164K complex images from COCO [2]
  • Dense pixel-level annotations
  • 80 thing classes, 91 stuff classes and 1 class 'unlabeled'
  • Instance-level annotations for things from COCO [2]
  • Complex spatial context between stuff and things
  • 5 captions per image from COCO [2]

Research Paper

COCO-Stuff: Thing and Stuff Classes in Context
H. Caesar, J. Uijlings, V. Ferrari,
In Computer Vision and Pattern Recognition (CVPR), 2018.
[paper][bibtex]

Versions of COCO-Stuff

  • COCO-Stuff dataset: The final version of COCO-Stuff, that is presented on this page. It includes all 164K images from COCO 2017 (train 118K, val 5K, test-dev 20K, test-challenge 20K). It covers 172 classes: 80 thing classes, 91 stuff classes and 1 class 'unlabeled'. This dataset will form the basis of all upcoming challenges.
  • COCO 2017 Stuff Segmentation Challenge: A semantic segmentation challenge on 55K images (train 40K, val 5K, test-dev 5K, test-challenge 5K) of COCO. To focus on stuff, we merged all 80 thing classes into a single class 'other'. The results of the challenge were presented at the Joint COCO and Places Recognition Workshop at ICCV 2017.
  • COCO-Stuff 10K dataset: Our first dataset, annotated by 10 in-house annotators at the University of Edinburgh. It includes 10K images from the training set of COCO. We provide a 9K/1K (train/val) split to make results comparable. The dataset includes 80 thing classes, 91 stuff classes and 1 class 'unlabeled'. This was initially presented as 91 thing classes, but is now changed to 80 thing classes, as 11 classes do not have any segmentation annotations in COCO. This dataset is a subset of all other releases.

Downloads

Filename Description Size
train2017.zip COCO 2017 train images (118K images) 18 GB
val2017.zip COCO 2017 val images (5K images) 1 GB
stuffthingmaps_trainval2017.zip Stuff+thing PNG-style annotations on COCO 2017 trainval 659 MB
stuff_trainval2017.zip Stuff-only COCO-style annotations on COCO 2017 trainval 543 MB
annotations_trainval2017.zip Thing-only COCO-style annotations on COCO 2017 trainval 241 MB
labels.md Indices, names, previews and descriptions of the classes in COCO-Stuff <10 KB
labels.txt Machine readable version of the label list <10 KB
README.md This readme <10 KB

To use this dataset you will need to download the images (18+1 GB!) and annotations of the trainval sets. To download earlier versions of this dataset, please visit the COCO 2017 Stuff Segmentation Challenge or COCO-Stuff 10K.

Caffe-compatible stuff-thing maps We suggest using the stuffthingmaps, as they provide all stuff and thing labels in a single .png file per image. Note that the .png files are indexed images, which means they store only the label indices and are typically displayed as grayscale images. To be compatible with most Caffe-based semantic segmentation methods, thing+stuff labels cover indices 0-181 and 255 indicates the 'unlabeled' or void class.

Separate stuff and thing downloads Alternatively you can download the separate files for stuff and thing annotations in COCO format, which are compatible with the COCO-Stuff API. Note that the stuff annotations contain a class 'other' with index 183 that covers all non-stuff pixels.

Setup

Use the following instructions to download the COCO-Stuff dataset and setup the folder structure. The instructions are for Ubuntu and require git, wget and unzip. On other operating systems the commands may differ:

# Get this repo
git clone https://github.com/nightrome/cocostuff.git
cd cocostuff

# Download everything
wget --directory-prefix=downloads http://images.cocodataset.org/zips/train2017.zip
wget --directory-prefix=downloads http://images.cocodataset.org/zips/val2017.zip
wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip

# Unpack everything
mkdir -p dataset/images
mkdir -p dataset/annotations
unzip downloads/train2017.zip -d dataset/images/
unzip downloads/val2017.zip -d dataset/images/
unzip downloads/stuffthingmaps_trainval2017.zip -d dataset/annotations/

Results

Below we present results on different releases of COCO-Stuff. If you would like to see your results here, please contact the first author.

Results on the val set of COCO-Stuff:

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
Deeplab VGG-16 (no CRF) [4] [1] 45.1% 63.6% 33.2% 47.6%

Note that the results between the 10K dataset and the full dataset are not direclty comparable, as different train and val images are used. Furthermore, on the full dataset we train Deeplab for 100K iterations [1], compared to 20K iterations on the 10K dataset [1b].

Results on the val set of the COCO 2017 Stuff Segmentation Challenge:

We show results on the val set of the challenge. Please refer to the official leaderboard for results on the test-dev and test-challenge sets. Note that these results are not comparable to other COCO-Stuff results, as the challenge only includes a single thing class 'other'.

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
Inplace-ABN sync [8] - - 24.9% -

Results on the val set of COCO-Stuff 10K:

Method Source Class accuracy Pixel accuracy Mean IOU FW IOU
FCN-16s [3] [1b] 34.0% 52.0% 22.7% -
Deeplab VGG-16 (no CRF) [4] [1b] 38.1% 57.8% 26.9% -
FCN-8s [3] [6] 38.5% 60.4% 27.2% -
SCA VGG-16 [7] [7] 42.5% 61.6% 29.1% -
DAG-RNN + CRF [6] [6] 42.8% 63.0% 31.2% -
DC + FCN+ [5] [5] 44.6% 65.5% 33.6% 50.6%
Deeplab ResNet (no CRF) [4] - 45.5% 65.1% 34.4% 50.4%
CCL ResNet-101 [10] [10] 48.8% 66.3% 35.7% -
DSSPN ResNet finetune [9] [9] 48.1% 69.4% 37.3% -
* OHE + DC + FCN+ [5] [5] 45.8% 66.6% 34.3% 51.2%
* W2V + DC + FCN+ [5] [5] 45.1% 66.1% 34.7% 51.0%
* DSSPN ResNet universal [9] [9] 50.3% 70.7% 38.9% -

* Results not comparable as they use external data

Labels

Label Names & Indices

To be compatible with COCO, COCO-Stuff has 91 thing classes (1-91), 91 stuff classes (92-182) and 1 class "unlabeled" (0). Note that 11 of the thing classes of COCO do not have any segmentation annotations (blender, desk, door, eye glasses, hair brush, hat, mirror, plate, shoe, street sign, window). The classes desk, door, mirror and window could be either stuff or things and therefore occur in both COCO and COCO-Stuff. To avoid confusion we add the suffix "-stuff" or "-other" to those classes in COCO-Stuff. The full list of classes and their descriptions can be found here.

Label Hierarchy

This figure shows the label hierarchy of COCO-Stuff including all stuff and thing classes: COCO-Stuff label hierarchy

Semantic Segmentation Models (stuff+things)

PyTorch model

We recommend this third party re-implementation of Deeplab v2 in PyTorch. Contrary to our Caffe model, it supports ResNet and CRFs. The authors provide setup routines and models for COCO-Stuff 164K. Please file any issues or questions on the project's GitHub page.

Caffe model

Here we provide the Caffe-based segmentation model used in the COCO-Stuff paper. However, for users not familiar with Caffe we recommend the above PyTorch model. Before using the semantic segmentation model, please setup the dataset. The commands below download and install Deeplab (incl. Caffe), download or train the model and predictions and evaluate the performance. The results should be the same as in the table. Due to several issues, we do not provide the Deeplab ResNet101 model, but some code for it can be found in this folder.

# Get and install Deeplab (you may need to change settings)
# We use a special version of Deeplab v2 that supports CuDNN v5, but others may work as well.
git submodule update --init models/deeplab/deeplab-v2
cd models/deeplab/deeplab-v2
cp Makefile.config.example Makefile.config
make all -j8

# Create symbolic links to the images and annotations
cd models/deeplab/cocostuff/data && ln -s ../../../../dataset/images images && ln -s ../../../../dataset/annotations annotations && cd ../../../..

# Option 1: Download the initial model
# wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_vgg16 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_vgg16_init.caffemodel

# Option 2: Download the trained model
# wg --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplab_cocostuff_trainedmodel.zip
# zip downloads/deeplab_cocostuff_trainedmodel.zip -d models/deeplab/cocostuff/model/deeplabv2_vgg16/model120kimages/

# Option 3: Run training & test
# cd models/deeplab && ./run_cocostuff_vgg16.sh && cd ../..

# Option 4 (fastest): Download predictions
wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplab_predictions_cocostuff_val2017.zip
unzip downloads/deeplab_predictions_cocostuff_val2017.zip -d models/deeplab/cocostuff/features/deeplabv2_vgg16/model120kimages/val/fc8/

# Evaluate performance
python models/deeplab/evaluate_performance.py

The table below summarizes the files used in these instructions:

Filename Description Size
deeplabv2_vgg16_init.caffemodel Deeplab VGG-16 pretrained model (original link) 152 MB
deeplab_cocostuff_trainedmodel.zip Deeplab VGG-16 trained on COCO-Stuff 286 MB
deeplab_predictions_cocostuff_val2017.zip Deeplab VGG-16 predictions on COCO-Stuff 54 MB

Note that the Deeplab predictions need to be rotated and cropped, as shown in this script.

Annotation Tool

For the Matlab annotation tool used to annotate the initial 10K images, please refer to this repository.

Misc

References

Licensing

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:

Acknowledgements

This work is supported by the ERC Starting Grant VisCul. The annotations were done by the crowdsourcing startup Mighty AI, and financed by Mighty AI and the Common Visual Data Foundation.

Contact

If you have any questions regarding this dataset, please contact us at holger-at-it-caesar.com.

Owner
Holger Caesar
Author of the COCO-Stuff and nuScenes datasets.
Holger Caesar
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022