Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

Overview

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation

License: MIT

[OpenReview] [arXiv] [Code]

The official implementation of GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022 Oral Presentation [54/3391]).

cover

Environments

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml
# Activate the environment
conda activate geodiff
# Install PyG
conda install pytorch-geometric=1.7.2=py37_torch_1.8.0_cu102 -c rusty1s -c conda-forge

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM) in this [google drive folder]. After downleading the dataset, it should be put into the folder path as specified in the dataset variable of config files ./configs/*.yml.

Prepare your own GEOM dataset from scratch (optional)

You can also download origianl GEOM full dataset and prepare your own data split. A guide is available at previous work ConfGF's [github page].

Training

All hyper-parameters and training details are provided in config files (./configs/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

# Default settings
python train.py ./config/qm9_default.yml
python train.py ./config/drugs_default.yml
# An ablation setting with fewer timesteps, as described in Appendix D.2.
python train.py ./config/drugs_1k_default.yml

The model checkpoints, configuration yaml file as well as training log will be saved into a directory specified by --logdir in train.py.

Generation

We provide the checkpoints of two trained models, i.e., qm9_default and drugs_default in the [google drive folder]. Note that, please put the checkpoints *.pt into paths like ${log}/${model}/checkpoints/, and also put corresponding configuration file *.yml into the upper level directory ${log}/${model}/.

Attention: if you want to use pretrained models, please use the code at the pretrain branch, which is the vanilla codebase for reproducing the results with our pretrained models. We recently notice some issue of the codebase and update it, making the main branch not compatible well with the previous checkpoints.

You can generate conformations for entire or part of test sets by:

python test.py ${log}/${model}/checkpoints/${iter}.pt \
    --start_idx 800 --end_idx 1000

Here start_idx and end_idx indicate the range of the test set that we want to use. All hyper-parameters related to sampling can be set in test.py files. Specifically, for testing qm9 model, you could add the additional arg --w_global 0.3, which empirically shows slightly better results.

Conformations of some drug-like molecules generated by GeoDiff are provided below.

Evaluation

After generating conformations following the obove commands, the results of all benchmark tasks can be calculated based on the generated data.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python eval_covmat.py ${log}/${model}/${sample}/sample_all.pkl

Task 2. Property Prediction

For the property prediction, we use a small split of qm9 different from the Conformation Generation task. This split is also provided in the [google drive folder]. Generating conformations and evaluate mean absolute errors (MAR) metric on this split can be done by the following commands:

python ${log}/${model}/checkpoints/${iter}.pt --num_confs 50 \
      --start_idx 0 --test_set data/GEOM/QM9/qm9_property.pkl
python eval_prop.py --generated ${log}/${model}/${sample}/sample_all.pkl

Visualizing molecules with PyMol

Here we also provide a guideline for visualizing molecules with PyMol. The guideline is borrowed from previous work ConfGF's [github page].

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Citation

Please consider citing the our paper if you find it helpful. Thank you!

@inproceedings{
xu2022geodiff,
title={GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation},
author={Minkai Xu and Lantao Yu and Yang Song and Chence Shi and Stefano Ermon and Jian Tang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=PzcvxEMzvQC}
}

Acknowledgement

This repo is built upon the previous work ConfGF's [codebase]. Thanks Chence and Shitong!

Contact

If you have any question, please contact me at [email protected] or [email protected].

Known issues

  1. The current codebase is not compatible with more recent torch-geometric versions.
  2. The current processed dataset (with PyD data object) is not compatible with more recent torch-geometric versions.
Owner
Minkai Xu
Research [email protected]. Previous:
Minkai Xu
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022