Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Related tags

Deep LearningTSA
Overview

Transferable Semantic Augmentation for Domain Adaptation

Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Paper

Transferable Semantic Augmentation for Domain Adaptation (CVPR 2021)

We propose a Transferable Semantic Augmentation (TSA) approach to enhance the classifier adaptation ability through implicitly generating source features towards target semantics.

Prerequisites

The code is implemented with CUDA 10.0.130, Python 3.7 and Pytorch 1.7.0.

To install the required python packages, run

pip install -r requirements.txt

Datasets

Office-31

Office-31 dataset can be found here.

Office-Home

Office-Home dataset can be found here.

VisDA 2017

VisDA 2017 dataset can be found here.

Running the code

Office-31

python3 train_TSA.py --gpu_id 4 --arch resnet50 --seed 1 --dset office --output_dir log/office31 --s_dset_path data/list/office/webcam_31.txt --t_dset_path data/list/office/amazon_31.txt --epochs 40 --iters-per-epoch 500 --lambda0 0.25 --MI 0.1

Office-Home

python3 train_TSA.py --gpu_id 4 --arch resnet50 --seed 0 --dset office-home --output_dir log/office-home --s_dset_path data/list/home/Art_65.txt --t_dset_path data/list/home/Product_65.txt --epochs 40 --iters-per-epoch 500 --lambda0 0.25 --MI 0.1

VisDA 2017

python3 train_TSA.py --gpu_id 4 --arch resnet101 --seed 2 --dset visda --output_dir log/visda --s_dset_path data/list/visda2017/synthetic_12.txt --t_dset_path data/list/visda2017/real_12.txt --epochs 30 --iters-per-epoch 1000 --lambda0 0.25 --MI 0.1

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{Li2021TSA,
    title = {Transferable Semantic Augmentation for Domain Adaptation},
    author = {Li, Shuang and Xie, Mixue and Gong, Kaixiong and Liu, Chi Harold and Wang, Yulin and Li, Wei},
    booktitle = {CVPR},   
    year = {2021}
}

Acknowledgements

Some codes are adapted from ISDA and Transfer-Learning-Library. We thank them for their excellent projects.

Contact

If you have any problem about our code, feel free to contact

or describe your problem in Issues.

PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022