pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

Overview

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal

Welcome! pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models. Using the Mask R-CNN model under FAIR's Detectron2 framework, pcnaDeep is able to detect and resolve very dense cell tracks with PCNA fluorescence.

overview

Installation

  1. PyTorch (torch >= 1.7.1) installation and CUDA GPU support are essential. Visit PyTorch homepage for specific installation schedule.
  2. Install modified Detectron2 v0.4 in this directory (original package homepage)
       cd detectron2-04_mod
       pip install .
    
    • In pcnaDeep, the detectron2 v0.4 dependency has been modified in two ways:
      1. To generate confidence score output of the instance classification, the method detectron2.modeling.roi_heads.fast_rcnn.fast_rcnn_inference_single_image has been modified.
      2. A customized dataset mapper function has been implemented as detectron2.data.dataset_mapper.read_PCNA_training.
    • To build Detectron2 on Windows may require the following change of torch package, if your torch version is old. Reference (Chinese).
       In torch\include\torch\csrc\jit\argument_spec.h,
       static constexpr size_t DEPTH_LIMIT = 128;
          change to -->
       static const size_t DEPTH_LIMIT = 128;
    
  3. Install pcnaDeep from source in this directory
    cd bin
    python setup.py install
    
  4. (optional, for training data annotation only) Download VGG Image Annotator 2 software.
  5. (optional, for visualisation only) Install Fiji (ImageJ) with TrackMate CSV Importer plugin.

Download pre-trained Mask R-CNN weights

The Mask R-CNN is trained on 60X microscopic images sized 1200X1200 square pixels. Download here.

You must download pre-trained weights and save it under ~/models/ for running tutorials.

Getting started

See a quick tutorial to get familiar with pcnaDeep.

You may also go through other tutorials for advanced usages.

API Documentation

API documentation is available here.

Reference

Please cite our paper if you found this package useful.

pcnaDeep: A Fast and Robust Single-Cell Tracking Method Using Deep-Learning Mediated Cell Cycle Profiling
Yifan Gui, Shuangshuang Xie, Yanan Wang, Ping Wang, Renzhi Yao, Xukai Gao, Yutian Dong, Gaoang Wang, Kuan Yoow Chan
bioRxiv 2021.09.19.460933; doi: https://doi.org/10.1101/2021.09.19.460933

Licence

pcnaDeep is released under the Apache 2.0 license.

Owner
ChanLab
Github repository for Chan Lab
ChanLab
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022