A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

Overview

appearance-scanner

About

This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neural Trace Photography

For any questions, please email xiaohema98 at gmail.com

Usage

System Requirement

  • Windows or Linux(The codes are validated on Win10, Ubuntu 18.04 and Ubuntu 16.04)
  • Python >= 3.6.0
  • Pytorch >= 1.6.0
  • tensorflow>=1.11.0, meshlab and matlab are needed if you process the test data we provide

Training

  1. move to appearance_scanner
  2. run train.bat or train.sh according to your own platform

Notice that the data generation step

python data_utils/origin_parameter_generator_n2d.py %data_root% %Sample_num% %train_ratio%

should be run only once.

Training Visulization

When training is started, you can open tensorboard to observe the training process. There will be two log images of a certain training sample, one is the sampled lumitexels from 64 views and the other is an composite image from six images in the order of groundtruth lumitexel, groundtruth diffuse lumitexel, groundtruth specular lumitexel, predicted lumitexel, predicted diffuse lumitexel and predicted specular lumitexel.

Trained lighting pattern will also be showed. Trained model will be found in the log_dir set in train.bat/train.sh.

License

Our source code is released under the GPL-3.0 license for acadmic purposes. The only requirement for using the code in your research is to cite our paper:

@article{Ma:2021:Scanner,
author = {Ma, Xiaohe and Kang, Kaizhang and Zhu, Ruisheng and Wu, Hongzhi and Zhou, Kun},
title = {Free-Form Scanning of Non-Planar Appearance with Neural Trace Photography},
year = {2021},
issue_date = {August 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {40},
number = {4},
issn = {0730-0301},
url = {https://doi.org/10.1145/3450626.3459679},
doi = {10.1145/3450626.3459679},
journal = {ACM Trans. Graph.},
month = jul,
articleno = {124},
numpages = {13},
keywords = {illumination multiplexing, SVBRDF, optimal lighting pattern}
}

For commercial licensing options, please email hwu at acm.org. See COPYING for the open source license.

Reconstruction process

The reconstruction needs photographs taken with our scanner, a pre-trained network model and a pre-captured geometry shape as input. First, perform structure-from-motion with COLMAP, resulting in a 3D point cloud and camera poses with respect to it. Next, this point cloud is precisely aligned with the pre-captured shape. Then the view information of each vertex can be assembled as the input of the network. Last, we fit the predicted grayscale specular lumitexel with L-BFGS-B, to obtain the refletance parameters.

Download our Cheongsam test data and unzip it in appearance_scanner/data/.

Three sample photographs captured from the Cheongsam object. The brightness of the original images has been doubled for a better visualization.

Download our model and unzip it in appearance_scanner/.

1. Camera Registration

1.1 Run SFM/run.bat first to brighten the raw images

1.2 Open Colmap and do the following steps

1.2.1 New project

1.2.2 Feature extraction

Copy the parameters of our camera in device_configuration/cam.txt to Custom parameters.

1.2.3 Feature matching

Tick guided_matching and run.

1.2.4 Reconstruction options

Do not tick multiple_models in the General sheet.

Do not tick refine_focal_length/refine_extra_params/use_pba in the Bundle sheet.

Start reconstruction.

1.2.5 Bundle adjustment

Do not tick refine_focal_length/refine_principal_point/refine_extra_params.

1.2.6

Make a folder named undistort_feature in Cheongsam/ and export model as text in undistort_feature folder. Three files including cameras.txt, images.txt and point3D.txt will be saved.

1.2.7

Dense reconstruction -> select undistort_feature folder -> Undistortion -> Stereo

Since we upload all the photos we taken, it will take a long time to run this step. We strongly recommend you run

colmap stereo_fusion --workspace_path path --input_type photometric --output_path path/fused.ply

//change path to undistort_feature folder

when the files amount in undistort_feature/stereo/normal_maps arise to around 200-250. It will output a coarse point cloud in undistort_feature/ .

Delete the noise points and the table plane.

Save fused.ply.

2. Extract measurements

move your own model to models/ and run appearance_scanner/test_files/prepare_pattern.bat

run extract_measurements/run.bat

3. Align mesh

3.1 Use meshlab to align mesh roughly

Open fused.ply and Cheongsam/scan/Cheongsam.ply in the same meshlab window. Cheongsam.ply is pre-capptured with a commercial mobile 3D scanner, EinScan Pro 2X Plus.

Align two mesh and save project file in Cheongsam/scan/Cheongsam.aln, which records the transform matrix between two meshes.

run CoherentPointDrift/run.bat to align Cheongsam.ply to fused.ply.

3.2 Further Alignment

run CoherentPointDrift/CoherentPointDrift-master/simplify/run.bat to simplify two meshes. It will call meshlabserver to simplify two meshes so that save the processing time.

Open the CPD project in Matlab and run main.m.

After alignment done, run CoherentPointDrift/run_pass2.bat. meshed-poisson_obj.ply will be saved in undistort_feature/ .

You should open fused.ply and meshed-poisson_obj.ply in the same meshlab window to check the quality of alignment. It is a key factor in the final result.

4. Generate view information from registrated cameras

4.1 Remesh

run ACVD/aarun.bat

save undistort_feature/meshed-poisson_obj_remeshed.ply as undistort_feature/meshed-poisson_obj_remeshed.obj

It is not necessary to reconstruct all the vertices on the pre-captured shape in our case. The remesh step will output an optimized 3D triangular mesh with a user defined vertex budget, which is controlled by NVERTICES in aarun.bat.

4.2 uvatlas

copy data_processing/device_configuration/extrinsic.bin to undistort_feature/ copy Cheongsam/512.exr and 1024.exr to undistort_feature/

run generate_texture/trans.bat to transform mesh from colmap frame to world frame in our system and generate uv maps.

We recommend that you generate uv maps with resolution of 512x512 because it will save a lot of time and retain most details. The resolution of the results in our paper is 1024x1024.

You can set UVMAP_WIDTH and UVMAP_HEIGHT to 1024 in uv/uv_generator.bat if you pursue higher quality.

4.3 Compute view information

Downloads embree and copy bin/embree3.dll, glfw3.dll, tbb12.dll to generate_texture/.

Downloads opencv and copy opencv_world#v.dll to generate_texture/. We use opencv3.4.3 in our project.

in generate_texture/texgen.bat, set TEXTURE_RESOLUTION to the certain resolution

choose the same line or the other reference on meshed-poisson_obj_remeshed.obj and on the physical object, then meature the lengths of both. Set the results to COLMAP_L and REAL_L. REAL_L in mm.

The marker cylinder's diameter is 10cm, so we set REAL_L to 100.

run generate_texture/texgen.bat to output view information of all registrated cameras.

5. Gather data

run gather_data/run.bat to gather the inputs to the network for each valid pixel on the texture map. A folder named images_{resolution} will be made in Cheongsam/.

6. Fitting

  1. Change %DATA_ROOT% and %TEXTURE_MAP_SIZE% in fitting/tf_ggx_render/run.bat. Then run fitting/tf_ggx_render/run.bat.
  2. A folder named fitting_folder_for_server will be generated under texture_{resolution}.
  3. Upload the entire folder generated in previous step to a linux server.
  4. Change current path of terminal to fitting_folder_for_server\fitting_temp\tf_ggx_render, then run split.sh or split1024.sh according to the resolution you chosen. (split.sh is for 512. If you want to use custom texture map resolution, you may need to modify the $TEX_RESOLUTION in split.sh)
  5. When the fitting procedure finished, a folder named Cheongsam/images_{resolution}/data_for_server/data/images/data_for_server/fitted_grey will be generated. It contains the final texture maps, including normal_fitted_global.exr, tangent_fitted_global.exr, axay_fitted.exr, pd_fitted.exr and ps_fitted.exr.
    Note: If you find the split.sh cannot run properly and complain about abscent which_server argument, it's probably caused by the difference of linux and windows. Reading in the sh file and writing it with no changing of content on sever can fix this issue.
diffuse specular roughness
normal tangent

7. Render results

We use the anisotropic GGX model to represent reflectance. The object can be rendered with path tracing using NVIDIA OptiX or openGL.

Reference & Third party tools

Shining3D. 2021. EinScan Pro 2X Plus Handheld Industrial Scanner. Retrieved January, 2021 from https://www.einscan.com/handheld-3d-scanner/2x-plus/

Colmap: https://demuc.de/colmap/

Coherent Point Drift: https://ieeexplore.ieee.org/document/5432191

ACVD: https://github.com/valette/ACVD

Embree: https://www.embree.org/

OpenCV: https://opencv.org/

Owner
Xiaohe Ma
Xiaohe Ma
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022