Reinforcement Learning via Supervised Learning

Related tags

Deep Learningrvs
Overview

CircleCI codecov

Reinforcement Learning via Supervised Learning

Installation

Run

pip install -e .

in an environment with Python >= 3.7.0, <3.9.

The code depends on MuJoCo 2.1.0 (for mujoco-py) and MuJoCo 2.1.1 (for dm-control). Here are instructions for installing MuJoCo 2.1.0 and instructions for installing MuJoCo 2.1.1.

If you use the provided Dockerfile, it will automatically handle the MuJoCo dependencies for you. For example:

docker build -t rvs:latest .
docker run -it --rm -v $(pwd):/rvs rvs:latest bash
cd rvs
pip install -e .

Reproducing Experiments

The experiments directory contains a launch script for each environment suite. For example, to reproduce the RvS-R results in D4RL Gym locomotion, run

bash experiments/launch_gym_rvs_r.sh

Each launch script corresponds to a configuration file in experiments/config which serves as a reference for the hyperparameters associated with each experiment.

Adding New Environments

To run RvS on an environment of your own, you need to create a suitable dataset class. For example, in src/rvs/dataset.py, we have a dataset class for the GCSL environments, a dataset class for RvS-R in D4RL, and a dataset class for RvS-G in D4RL. In particular, the D4RLRvSGDataModule allows for conditioning on arbitrary dimensions of the goal state using the goal_columns attribute; for AntMaze, we set goal_columns to (0, 1) to condition only on the x and y coordinates of the goal state.

Baseline Numbers

We replicated CQL using this codebase, which was recommended to us by the CQL authors. All hyperparameters and logs from our replication runs can be viewed at our CQL-R Weights & Biases project.

We replicated Decision Transformer using our fork of the author's codebase, which we customized to add AntMaze. All hyperparameters and logs from our replication runs can be viewed at our DT Weights & Biases project.

Citing RvS

To cite RvS, you can use the following BibTeX entry:

@misc{emmons2021rvs,
      title={RvS: What is Essential for Offline RL via Supervised Learning?}, 
      author={Scott Emmons and Benjamin Eysenbach and Ilya Kostrikov and Sergey Levine},
      year={2021},
      eprint={2112.10751},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Scott Emmons
PhD student at UC Berkeley's Center for Human-Compatible Artificial Intelligence
Scott Emmons
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023