The RWKV Language Model

Overview

RWKV-LM

We propose the RWKV language model, with alternating time-mix and channel-mix layers:

\begin{align*}
\text{Time-mix :} && \text{TM}_{t,c} &&=&&\text{sigmoid}(\text{R}_{t,c}) &&\cdot&& &&\textstyle\sum_{u} &&\textbf{W}_{t,u,c} &&\cdot&& \text{softmax}_t(\text{K}_{u,c}) &&\cdot&& \text{V}_{u,c}\\
\text{Channel-mix :} && \text{CM}_{t,c} &&=&&\text{sigmoid}(\text{R}_{t,c}) &&\cdot&& &&\textstyle\sum_d &&\textbf{W}_{c,d} &&\cdot&& \text{gelu}(\text{K}_{t,d}) &&\cdot&& \text{V}_{t,d}
\end{align*}

  • The R, K, V are generated by linear transforms of input, and W is parameter. The idea of RWKV is to decompose attention into R(target) * W(src, target) * K(src). So we can call R "receptance", and sigmoid means it's in 0~1 range.

  • The Time-mix is similar to AFT (https://arxiv.org/abs/2105.14103). There are two differences.

(1) We changed the normalization (denominator). For masked language models, we define:

\text{softmax}_t(\text{K}_{u,c}) = \frac{\exp(\text{K}_{u,c})}{\sum_{v \leq t}\exp(\text{K}_{v,c})}

(2) We decompose W_{t,u,c} and introduce multi-head W (here h is the corresponding head of c):

W_{t,u,c}=f_h(t-u)\cdot \alpha_h(u) \cdot \beta_h(t)

(3) You don't need LayerNorm for Time-mix. In fact, the model converges faster when LayerNorm is removed.

Moreover we multiply the final output of Time-mix layer by γ(t). The reason for the α β γ factors, is because the context size is smaller when t is small, and this can be compensated using the α β γ factors.


We also propose a new sampling method (as in src/utils.py):

(1) Find the max probability p_max after softmax.

(2) Remove all entries whose probability is lower than 0.02 * pow(p_max, 2)

(3) Feel free to tune the 0.02 and 2 factor.


Training loss, RWKV vs MHA+Rotary+GeGLU:

RWKV-vs-MHA

(this is character-level loss with simplebooks-92 dataset https://dldata-public.s3.us-east-2.amazonaws.com/simplebooks.zip)

Comments
  • Sequence to Sequence?

    Sequence to Sequence?

    Hey @BlinkDL! Awesome project!

    I was wondering if you have performed any Seq-2-Seq experiments with it? Any reason for going with GPT model in the first place as opposed to something like T5 (standard Transformer)? Any direction on what changes will be required to make a standard encoder-decoder architecture with RWKV?

    Also, is there any report on in-context-learning/FSL capability of the latest trained model?

    opened by SushantDaga 2
  • v4 model.py vs model_run.py

    v4 model.py vs model_run.py

    Hi, Thanks for this awesome repo! I'm trying to understand the code and found that in the v4 folder, there's this model.py and model_run.py, which contains GPT and RWKV_GPT respectively which all uses different initialization methods. Could you elaborate on when should which one be used? Thanks in advnace!

    opened by jingweiz 3
  • RWKV-4 169m/430m in browser with ORT Web / TF.js / tfjs-tflite?

    RWKV-4 169m/430m in browser with ORT Web / TF.js / tfjs-tflite?

    Hi, really exciting project! I'm wondering if you've published the model conversion script that you used to create the js_models files from the .pth model file? It would be awesome to see how the larger and newer models like RWKV-4 169m/430m perform in the browser! I think the inference speed of RWKV opens up many new possibilities for language models on the web.

    opened by josephrocca 32
  • CUDA compilation error with Ctx Length>2000

    CUDA compilation error with Ctx Length>2000

    Hello, I am trying out RWKV with audio modality and when I set T_MAX>>1000, it throws this error:

    Emitting ninja build file /root/.cache/torch_extensions/py39_cu116/timex/build.ninja...
    Building extension module timex...
    Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
    [1/2] /usr/local/cuda/bin/nvcc  -DTORCH_EXTENSION_NAME=timex -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1013\" -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/TH -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /root/anaconda3/envs/surya-env/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' --use_fast_math --extra-device-vectorization -DTmax=10000 -DBF=8 -DBB=2 -std=c++14 -c cuda/timex_cuda.cu -o timex_cuda.cuda.o 
    FAILED: timex_cuda.cuda.o 
    /usr/local/cuda/bin/nvcc  -DTORCH_EXTENSION_NAME=timex -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1013\" -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/TH -isystem /root/anaconda3/envs/surya-env/lib/python3.9/site-packages/torch/include/THC -isystem /usr/local/cuda/include -isystem /root/anaconda3/envs/surya-env/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' --use_fast_math --extra-device-vectorization -DTmax=10000 -DBF=8 -DBB=2 -std=c++14 -c cuda/timex_cuda.cu -o timex_cuda.cuda.o 
    ptxas error   : Entry function '_Z15kernel_backwardIfEvPKT_S2_S2_PS0_S3_iii' uses too much shared data (0x30d40 bytes, 0xc000 max)
    ptxas error   : Entry function '_Z14kernel_forwardIfEvPKT_S2_PS0_S0_iii' uses too much shared data (0x57e40 bytes, 0xc000 max)
    ninja: build stopped: subcommand failed.
    

    GPU: A100, VRAM: 42GB, CUDA 11.6

    I am okay if the training takes a bit long. But I need this to work. Don't know any CUDA. Can you suggest some workarounds?

    Thanks for the incredible work btw!

    opened by ojus1 8
  • 关于调用模型做分类任务

    关于调用模型做分类任务

    你好作者!我对此工作很感兴趣,因为我现在在用基于transformer的模型做分类任务,transformer或者RNN在分类任务里通常采用最后一个模块的每个通道的最后一个元素作为输出,并通过全连接层映射到几个类别。 请问你觉得RWKV原理类似吗?依旧提取最后一个元素作为输出是否稳妥呢?希望您能给出一些建议,我将很感激!

    opened by louisinhit 2
Releases(4.00)
Owner
PENG Bo
http://zhihu.com/people/bopengbopeng
PENG Bo
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022