torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

Overview

torchsummaryDynamic

Improved tool of torchsummaryX.

torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Usage

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)))

# or

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)), calc_op_types=(nn.Conv2d, nn.Linear))

Args:

  • model (Module): Model to summarize
  • x (Tensor): Input tensor of the model with [N, C, H, W] shape dtype and device have to match to the model
  • calc_op_types (Tuple): Tuple of op types to be calculated
  • args, kwargs: Other arguments used in model.forward function

Examples

Calculate Dynamic Conv2d FLOPs/params

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummaryDynamic import summary

class USConv2d(nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, us=[False, False]):
        super(USConv2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.width_mult = None
        self.us = us

    def forward(self, inputs):
        in_channels = inputs.shape[1] // self.groups if self.us[0] else self.in_channels // self.groups
        out_channels = int(self.out_channels * self.width_mult) if self.us[1] else self.out_channels

        weight = self.weight[:out_channels, :in_channels, :, :]
        bias = self.bias[:out_channels] if self.bias is not None else self.bias

        y = F.conv2d(inputs, weight, bias, self.stride, self.padding, self.dilation, self.groups)
        return y

model = nn.Sequential(
    USConv2d(3, 32, 3, us=[True, True]),
)

# width_mult=1.0
model.apply(lambda m: setattr(m, 'width_mult', 1.0))
summary(model, torch.zeros(1, 3, 224, 224))

# width_mult=0.5
model.apply(lambda m: setattr(m, 'width_mult', 0.5))
summary(model, torch.zeros(1, 3, 224, 224))

Output

# width_mult=1.0
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 32, 222, 222]     896   42581376
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             42581376
==========================================================

# width_mult=0.5
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 16, 222, 222]     896   21290688
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             21290688
==========================================================
Owner
Bohong Chen
Bohong Chen
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023