Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Related tags

Deep LearningTempo
Overview

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning DOI

Introduction

This repository was used to develop Tempo, as described in: Optimizing risk-based breast cancer screening policies with reinforcement learning.

Screening programs must balance the benefits of early detection against the costs of over screening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH) USA and validated them on held-out patients from MGH, and on external datasets from Emory USA, Karolinska Sweden and Chang Gung Memorial Hospital (CGMH) Taiwan. Across all test sets, we found that a Tempo policy combined with an image-based AI risk model, Mirai [1] was significantly more efficient than current regimes used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we showed that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired early detection to screening cost trade-off without training new policies. Finally, we demonstrated Tempo policies based on AI-based risk models out performed Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs, advancing early detection while reducing over-screening.

This code base is meant to provide exact implementation details for the development of Tempo.

Aside on Software Depedencies

This code assumes python3.6 and a Linux environment. The package requirements can be install with pip:

pip install -r requirements.txt

Tempo-Mirai assumes access to Mirai risk assessments. Resources for using Mirai are shown here.

Method

method

Our full framework, named Tempo, is depicted above. As described above, we first train a risk progression neural network to predict future risk assessments given previous assessments. This model is then used to estimate patient risk at unobserved timepoints and it enables us to simulate risk-based screening policies. Next, we train our screening policy, which is implemented as a neural network, to maximize the reward (i.e combination of early detection and screening cost) on our retrospective training set. We train our screening policy to support all possible early detection vs screening cost trade-offs using envelope Q-learning [2], an RL algorithm designed to balance multiple objectives. The input of our screening policies is the patient's risk assessment, and desired weighting between rewards (i.e screening preference). The output of the policy is a recommendation for when to return for the next screen, ranging from six months to three years in the future, in multiples of six months. Our reward balances two contrasting aspects, one reflecting the imaging cost, i.e., the average mammograms a year recommended by the policy, and one modeling early detection benefit relative to the retrospective screening trajectory. Our early detection reward measures the time difference in months between each patient's recommended screening date, if it was after their last negative mammogram, and their actual diagnosis date. We evaluate screening policies by simulating their recommendations for heldout patients.

Training Risk progression models

We experimented with different learning rates, hidden sizes, numbers of layers and dropout, and chose the model that obtained the lowest validation KL divergence on the MGH validation set. Our final risk progression RNN had two layers, a hidden dimension size of 100, a dropout of 0.25, and was trained for 30 epochs with a learning rate of 1e-3 using the Adam optimizer.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/risk_progression/gru.json

Given a trained risk progression model, we can now estimate unobserved risk assessments auto-regressively. At each time step, the model takes as input the previous risk assessment, the prior hidden state, using the previous predicted assessment if the real one is not available, and predicts the risk assessment at the next time step.

Training Tempo Personalized Screening Policies

We implemented our personalized screening policy as multiple layer perceptron, which took as input a risk assessment and weighting between rewards and predicted the Q-value for each action, i.e follow up recommendation, across the rewards. This network was trained using Envelope Q-Learning [2]. We experimented with different numbers of layers, hidden dimension sizes, learning rates, dropouts, exploration epsilons, target network reset rates and weight decay rates.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/screening/neural.json

Data availability

All datasets were used under license to the respective hospital system for the current study and are not publicly available. To access the MGH dataset, investigators should reach out to C.L. to apply for an IRB approved research collaboration and obtain an appropriate Data Use Agreement. To access the Karolinska dataset, investigators should reach out to F.S. to apply for an approved research collaboration and sign a Data Use Agreement. To access the CGMH dataset, investigators should contact G.L. to apply for an IRB approved research collaboration. To access the Emory dataset, investigators should reach out to H.T to apply for an approved collaboration.

References

[1] Yala, Adam, et al. "Toward robust mammography-based models for breast cancer risk." Science Translational Medicine 13.578 (2021).

[2] Yang, Runzhe, Xingyuan Sun, and Karthik Narasimhan. "A generalized algorithm for multi-objective reinforcement learning and policy adaptation." arXiv preprint arXiv:1908.08342 (2019).

Citing Tempo

@article{yala2021optimizing,
  title={Optimizing risk-based breast cancer screening policies with reinforcement learning},
  author={Yala, Adam and Mikhael, Peter and Lehman, Constance and Lin, Gigin and Strand, Fredrik and Wang, Yung-Liang and Hughes, Kevin and Satuluru, Siddharth and Kim, Thomas and Banerjee, Imon and others},
  year={2021}
}
You might also like...
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Code for
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Releases(v1.0)
Owner
Adam Yala
PhD Candidate at MIT CSAIL
Adam Yala
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022