Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Related tags

Deep LearningTempo
Overview

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning DOI

Introduction

This repository was used to develop Tempo, as described in: Optimizing risk-based breast cancer screening policies with reinforcement learning.

Screening programs must balance the benefits of early detection against the costs of over screening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH) USA and validated them on held-out patients from MGH, and on external datasets from Emory USA, Karolinska Sweden and Chang Gung Memorial Hospital (CGMH) Taiwan. Across all test sets, we found that a Tempo policy combined with an image-based AI risk model, Mirai [1] was significantly more efficient than current regimes used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we showed that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired early detection to screening cost trade-off without training new policies. Finally, we demonstrated Tempo policies based on AI-based risk models out performed Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs, advancing early detection while reducing over-screening.

This code base is meant to provide exact implementation details for the development of Tempo.

Aside on Software Depedencies

This code assumes python3.6 and a Linux environment. The package requirements can be install with pip:

pip install -r requirements.txt

Tempo-Mirai assumes access to Mirai risk assessments. Resources for using Mirai are shown here.

Method

method

Our full framework, named Tempo, is depicted above. As described above, we first train a risk progression neural network to predict future risk assessments given previous assessments. This model is then used to estimate patient risk at unobserved timepoints and it enables us to simulate risk-based screening policies. Next, we train our screening policy, which is implemented as a neural network, to maximize the reward (i.e combination of early detection and screening cost) on our retrospective training set. We train our screening policy to support all possible early detection vs screening cost trade-offs using envelope Q-learning [2], an RL algorithm designed to balance multiple objectives. The input of our screening policies is the patient's risk assessment, and desired weighting between rewards (i.e screening preference). The output of the policy is a recommendation for when to return for the next screen, ranging from six months to three years in the future, in multiples of six months. Our reward balances two contrasting aspects, one reflecting the imaging cost, i.e., the average mammograms a year recommended by the policy, and one modeling early detection benefit relative to the retrospective screening trajectory. Our early detection reward measures the time difference in months between each patient's recommended screening date, if it was after their last negative mammogram, and their actual diagnosis date. We evaluate screening policies by simulating their recommendations for heldout patients.

Training Risk progression models

We experimented with different learning rates, hidden sizes, numbers of layers and dropout, and chose the model that obtained the lowest validation KL divergence on the MGH validation set. Our final risk progression RNN had two layers, a hidden dimension size of 100, a dropout of 0.25, and was trained for 30 epochs with a learning rate of 1e-3 using the Adam optimizer.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/risk_progression/gru.json

Given a trained risk progression model, we can now estimate unobserved risk assessments auto-regressively. At each time step, the model takes as input the previous risk assessment, the prior hidden state, using the previous predicted assessment if the real one is not available, and predicts the risk assessment at the next time step.

Training Tempo Personalized Screening Policies

We implemented our personalized screening policy as multiple layer perceptron, which took as input a risk assessment and weighting between rewards and predicted the Q-value for each action, i.e follow up recommendation, across the rewards. This network was trained using Envelope Q-Learning [2]. We experimented with different numbers of layers, hidden dimension sizes, learning rates, dropouts, exploration epsilons, target network reset rates and weight decay rates.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/screening/neural.json

Data availability

All datasets were used under license to the respective hospital system for the current study and are not publicly available. To access the MGH dataset, investigators should reach out to C.L. to apply for an IRB approved research collaboration and obtain an appropriate Data Use Agreement. To access the Karolinska dataset, investigators should reach out to F.S. to apply for an approved research collaboration and sign a Data Use Agreement. To access the CGMH dataset, investigators should contact G.L. to apply for an IRB approved research collaboration. To access the Emory dataset, investigators should reach out to H.T to apply for an approved collaboration.

References

[1] Yala, Adam, et al. "Toward robust mammography-based models for breast cancer risk." Science Translational Medicine 13.578 (2021).

[2] Yang, Runzhe, Xingyuan Sun, and Karthik Narasimhan. "A generalized algorithm for multi-objective reinforcement learning and policy adaptation." arXiv preprint arXiv:1908.08342 (2019).

Citing Tempo

@article{yala2021optimizing,
  title={Optimizing risk-based breast cancer screening policies with reinforcement learning},
  author={Yala, Adam and Mikhael, Peter and Lehman, Constance and Lin, Gigin and Strand, Fredrik and Wang, Yung-Liang and Hughes, Kevin and Satuluru, Siddharth and Kim, Thomas and Banerjee, Imon and others},
  year={2021}
}
You might also like...
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Code for
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Releases(v1.0)
Owner
Adam Yala
PhD Candidate at MIT CSAIL
Adam Yala
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023