Visualization Website by using Dash and Heroku

Overview

Visualization Website by using Dash and Heroku

You can visit the website https://payroll-expense-analysis.herokuapp.com/

In this project, I am interested in studying the top 10 departments with the highest total payroll expense in each county in Massachusetts in 2020. The link to this dashboard is:

Dashboard Description

Users can click on one or multiple counties to study the departments with the highest total payroll expenses in the state of Massachusetts. Moreover, the pie chart would allow us to compare the proportion of total payroll earnings across the selected counties. By using the checkbox interactive element, users could also generate the range of counties they want to study the top 10 departments with the highest payroll expense among the selected counties. Users who are interested in discovering high payroll expense on the department and county level could utilize this dashboard as an initial observation to generate idea for further research directions.

Dashboard elements:

The dropdown box is an interactive element where the users have the option to choose the counties they are interested in. It will generate a bar plot that reflects the sum of total earnings on the Y-axis, the top 10 department names with the highest pay in the county on the x-axis. The check box element creates an interactive platform for users to compare the percentage of total earnings across counties. For example, if we choose Suffolk and Middlesex as the base of our analysis, then we can see that Suffolk is 86.9 percent compared to the sum of Suffolk and Middlesex. If we had chosen all counties, we would be able to see how much funds were dedicated to the city employee payroll in each county across the state of Massachusetts. The check box element also generates a table of the top departments with the most payroll spendings within the selected counties.

Data Sources

The data collected from:

the City of Boston: The City of Boston US geo data: US geo data

The original dataset contained the following columns:

Name: The name of the city employee Department Name: The name of the department the employee work at Title: The title or position the individual has in the respective department Postal: The postal code of where the payroll is expensed

The definition the payroll component rest of the variables is provided by the City of Boston:

Definition

The other dataset we had used is from "http://download.geonames.org/export/zip/US.zip"

This data is a txt. List that contains geographic information of each postal code, including the state, statecode, city, county, longitude, latitude, etc. I transformed this list into a dataset. This dataset would be merged with our payroll 2020 dataset to locate each payroll’s county.

Data Cleaning Process:

The first step is to input the original payroll data and the US geo data from the website. Then, I eliminated the rows in the payroll data where postal code is null. Furthermore, I selected only the department name, total earnings, and the county columns to use as the dashboard data source. In addition. I eliminated the rows that is not within the State of Massachusetts. For the bar plot and table, I sorted the data through grouping the dataset by department name and county and summarizing the total earnings for each respective group. For the pie chart, I will sort the data by grouping the dataset solely by county and summarize the total earnings.

##Additional Comments

It is interesting to discover that the Boston Police Department is the highest across all departments. I think it is worth the future investigation for more detailed understanding of the payroll components.

Payroll-Expense

Owner
YF Liu
YF Liu
Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript Required.

Dash Dash is the most downloaded, trusted Python framework for building ML & data science web apps. Built on top of Plotly.js, React and Flask, Dash t

Plotly 17.9k Dec 31, 2022
Certificate generating and sending system written in Python.

Certificate Generator & Sender How to use git clone https://github.com/saadhaxxan/Certificate-Generator-Sender.git cd Certificate-Generator-Sender Add

Saad Hassan 11 Dec 01, 2022
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
daily report of @arkinvest ETF activity + data collection

ark_invest daily weekday report of @arkinvest ETF activity + data collection This script was created to: Extract and save daily csv's from ARKInvest's

T D 27 Jan 02, 2023
A Bokeh project developed for learning and teaching Bokeh interactive plotting!

Bokeh-Python-Visualization A Bokeh project developed for learning and teaching Bokeh interactive plotting! See my medium blog posts about making bokeh

Will Koehrsen 350 Dec 05, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
A small script written in Python3 that generates a visual representation of the Mandelbrot set.

Mandelbrot Set Generator A small script written in Python3 that generates a visual representation of the Mandelbrot set. Abstract The colors in the ou

1 Dec 28, 2021
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

vispy 3k Jan 03, 2023
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Application for viewing pokemon regional variants.

Pokemon Regional Variants Application Application for viewing pokemon regional variants. Run The Source Code Download Python https://www.python.org/do

Michael J Bailey 4 Oct 08, 2021
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022