The implementation for the SportsCap (IJCV 2021)

Overview

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos

ProjectPage | Paper | Video | Dataset (Part01|Part02)

Xin Chen, Anqi Pang, Wei Yang, Yuexin Ma, Lan Xu, Kun Zhou, Jingyi Yu.

This repository contains the official implementation for the paper: SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos (IJCV 2021). Our work is capable of simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input.

Abstract

Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap -- the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attributes.

Licenses

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

All material is made available under Creative Commons BY-NC-SA 4.0 license. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

The SMART Dataset

SportsCap proposes a challenging sports dataset called Sports Motion and Recognition Tasks (SMART) dataset, which contains per-frame action labels, manually annotated pose, and action assessment of various challenging sports video clips from professional referees.

Download

You can download the SMART dataset (17 GB, version 1.0) from the Google Drive [SMART_part01 | SMART_part02]. The SMART dataset includes source images (>60,000), annotations(>45,000, both pose and action), sport motion embedding spaces, videos (coming soon) and tools.

Annotation

Please load these JSON files in python to parse these annotations about 2D key-points of poses and fine-grained action labels.

Table_VideoInfo_diving.json
Table_VideoInfo_gym.json
Table_VideoInfo_polevalut_highjump_badminton.json

Tools

The tools folder includes several functions to load the annotation and calculate the pose variables. More useful scripts are coming soon.

utils.py - json_load, crop_img_skes, cal_body_bbox ...

Sports Motion Embedding Spaces

With the annotated 2D poses and MoCap 3D pose data, we collect the Sports Motion Embedding Spaces (SMES), the 2D/3D pose priors for various sports. SMES provides strong prior and regularization to ensure that the generated pose result lies in the corresponding action space.

Download

You can download the Motion Embedding Spaces (SMES) (7 MB, version 1.0) separately from GoogleDrive. The released SMES-V1.0 includes many sports, like vault, uneven bar, boxing, diving, hurdles, pole vault, high jump, and so on.

Usage

Coming soon.

Citation

If you find our code or paper useful, please consider citing:

@article{chen2021sportscap,
  title={SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos},
  author={Chen, Xin and Pang, Anqi and Yang, Wei and Ma, Yuexin and Xu, Lan and Yu, Jingyi},
  journal={arXiv preprint arXiv:2104.11452},
  year={2021}
}

Relevant Works

ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References (CVPR Oral 2021)
Yannan He, Anqi Pang, Xin Chen, Han Liang, Minye Wu, Yuexin Ma, Lan Xu

TightCap: 3D Human Shape Capture with Clothing Tightness Field (Submit to TOG 2021)
Xin Chen, Anqi Pang, Wei Yang, Peihao Wang, Lan Xu, Jingyi Yu

AutoSweep: Recovering 3D Editable Objects from a Single Photograph (TVCG 2018)
Xin Chen, Yuwei Li, Xi Luo, Tianjia Shao, Jingyi Yu, Kun Zhou, Youyi Zheng

End-to-end Recovery of Human Shape and Pose (CVPR 2018)
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik

Owner
Chen Xin
A Ph.D. Student of Computer Vision and Graphics
Chen Xin
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022