The implementation for the SportsCap (IJCV 2021)

Overview

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos

ProjectPage | Paper | Video | Dataset (Part01|Part02)

Xin Chen, Anqi Pang, Wei Yang, Yuexin Ma, Lan Xu, Kun Zhou, Jingyi Yu.

This repository contains the official implementation for the paper: SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos (IJCV 2021). Our work is capable of simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input.

Abstract

Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap -- the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attributes.

Licenses

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

All material is made available under Creative Commons BY-NC-SA 4.0 license. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

The SMART Dataset

SportsCap proposes a challenging sports dataset called Sports Motion and Recognition Tasks (SMART) dataset, which contains per-frame action labels, manually annotated pose, and action assessment of various challenging sports video clips from professional referees.

Download

You can download the SMART dataset (17 GB, version 1.0) from the Google Drive [SMART_part01 | SMART_part02]. The SMART dataset includes source images (>60,000), annotations(>45,000, both pose and action), sport motion embedding spaces, videos (coming soon) and tools.

Annotation

Please load these JSON files in python to parse these annotations about 2D key-points of poses and fine-grained action labels.

Table_VideoInfo_diving.json
Table_VideoInfo_gym.json
Table_VideoInfo_polevalut_highjump_badminton.json

Tools

The tools folder includes several functions to load the annotation and calculate the pose variables. More useful scripts are coming soon.

utils.py - json_load, crop_img_skes, cal_body_bbox ...

Sports Motion Embedding Spaces

With the annotated 2D poses and MoCap 3D pose data, we collect the Sports Motion Embedding Spaces (SMES), the 2D/3D pose priors for various sports. SMES provides strong prior and regularization to ensure that the generated pose result lies in the corresponding action space.

Download

You can download the Motion Embedding Spaces (SMES) (7 MB, version 1.0) separately from GoogleDrive. The released SMES-V1.0 includes many sports, like vault, uneven bar, boxing, diving, hurdles, pole vault, high jump, and so on.

Usage

Coming soon.

Citation

If you find our code or paper useful, please consider citing:

@article{chen2021sportscap,
  title={SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos},
  author={Chen, Xin and Pang, Anqi and Yang, Wei and Ma, Yuexin and Xu, Lan and Yu, Jingyi},
  journal={arXiv preprint arXiv:2104.11452},
  year={2021}
}

Relevant Works

ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References (CVPR Oral 2021)
Yannan He, Anqi Pang, Xin Chen, Han Liang, Minye Wu, Yuexin Ma, Lan Xu

TightCap: 3D Human Shape Capture with Clothing Tightness Field (Submit to TOG 2021)
Xin Chen, Anqi Pang, Wei Yang, Peihao Wang, Lan Xu, Jingyi Yu

AutoSweep: Recovering 3D Editable Objects from a Single Photograph (TVCG 2018)
Xin Chen, Yuwei Li, Xi Luo, Tianjia Shao, Jingyi Yu, Kun Zhou, Youyi Zheng

End-to-end Recovery of Human Shape and Pose (CVPR 2018)
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik

Owner
Chen Xin
A Ph.D. Student of Computer Vision and Graphics
Chen Xin
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022