PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

Overview

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition CVPR 2018, Salt Lake City, USA

Mikaela Angelina Uy and Gim Hee Lee

National University of Singapore

pic-network

Introduction

The PointNetVLAD is a deep network that addresses the problem of large-scale place recognition through point cloud based retrieval. The arXiv version of PointNetVLAD can be found here.

@inproceedings{uy2018pointnetvlad,
      title={PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition},
      author={Uy, Mikaela Angelina and Lee, Gim Hee},
      booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year={2018}
}

Benchmark Datasets

The benchmark datasets introdruced in this work can be downloaded here.

  • All submaps are in binary file format
  • Ground truth GPS coordinate of the submaps are found in the corresponding csv files for each run
  • Filename of the submaps are their timestamps which is consistent with the timestamps in the csv files
  • Use CSV files to define positive and negative point clouds
  • All submaps are preprocessed with the road removed and downsampled to 4096 points

Oxford Dataset

  • 45 sets in total of full and partial runs
  • Used both full and partial runs for training but only used full runs for testing/inference
  • Training submaps are found in the folder "pointcloud_20m_10overlap/" and its corresponding csv file is "pointcloud_locations_20m_10overlap.csv"
  • Training submaps are not mutually disjoint per run
  • Each training submap ~20m of car trajectory and subsequent submaps are ~10m apart
  • Test/Inference submaps found in the folder "pointcloud_20m/" and its corresponding csv file is "pointcloud_locations_20m.csv"
  • Test/Inference submaps are mutually disjoint

NUS (Inhouse) Datasets

  • Each inhouse dataset has 5 runs
  • Training submaps are found in the folder "pointcloud_25m_10/" and its corresponding csv file is "pointcloud_centroids_10.csv"
  • Test/Infenrence submaps are found in the folder "pointcloud_25m_25/" and its corresponding csv file is "pointcloud_centroids_25.csv"
  • Training submaps are not mutually disjoint per run but test submaps are

Project Code

Pre-requisites

  • Python
  • CUDA
  • Tensorflow
  • Scipy
  • Pandas
  • Sklearn

Code was tested using Python 3 on Tensorflow 1.4.0 with CUDA 8.0

sudo apt-get install python3-pip python3-dev python-virtualenv
virtualenv --system-site-packages -p python3 ~/tensorflow
source ~/tensorflow/bin/activate
easy_install -U pip
pip3 install --upgrade tensorflow-gpu==1.4.0
pip install scipy, pandas, sklearn

Dataset set-up

Download the zip file of the benchmark datasets found here. Extract the folder on the same directory as the project code. Thus, on that directory you must have two folders: 1) benchmark_datasets/ and 2) pointnetvlad/

Generate pickle files

We store the positive and negative point clouds to each anchor on pickle files that are used in our training and evaluation codes. The files only need to be generated once. The generation of these files may take a few minutes.

cd generating_queries/ 

# For training tuples in our baseline network
python generate_training_tuples_baseline.py

# For training tuples in our refined network
python generate_training_tuples_refine.py

# For network evaluation
python generate_test_sets.py

Model Training and Evaluation

To train our network, run the following command:

python train_pointnetvlad.py

To evaluate the model, run the following command:

python evaluate.py

Pre-trained Models

The pre-trained models for both the baseline and refined networks can be downloaded here

Submap generation

Added the rough MATLAB code that was used for submap generation upon requests. Some functions are gotten from the toolbox of Oxford Robotcar.

Some clarification: The voxel grid filter was used to downsample the cloud to 4096, which was done by selecting a leaf size that initially downsamples the cloud close to 4096 points, after which we randomly add points to make the cloud have exactly 4096 points. Please feel free to send me an email ([email protected]) for any further questions.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023