ShapeGlot: Learning Language for Shape Differentiation

Overview

ShapeGlot: Learning Language for Shape Differentiation

Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas.

representative

Introduction

This work is based on our ICCV-2019 paper. There, we proposed speaker & listener neural models that reason and differentiate objects according to their shape via language (hence the term shape--glot). These models can operate on 2D images and/or 3D point-clouds and do learn about natural properties of shapes, including the part-based compositionality of 3D objects, from language alone. The latter fact, makes them remarkably robust, enabling a plethora of zero-shot-transfer learning applications. You can check our project's webpage for a quick introduction and produced results.

Dependencies

Main Requirements:

Our code has been tested with Python 3.6.9, Pytorch 1.3.1, CUDA 10.0 on Ubuntu 14.04.

Installation

Clone the source code of this repository and pip install it inside your (virtual) environment.

git clone https://github.com/optas/shapeglot
cd shapeglot
pip install -e .

Data Set

We provide 78,782 utterances referring to a ShapeNet chair that was contrasted against two distractor chairs via the reference game described in our accompanying paper (dataset termed as ChairsInContext). We further provide the data used in the Zero-Shot experiments which include 300 images of real-world chairs, and 1200 referential utterances for ShapeNet lamps & tables & sofas, and 400 utterances describing ModelNet beds. Last, we include image-based (VGG-16) and point-cloud-based (PC-AE) pretrained features for all ShapeNet chairs to facilitate the training of the neural speakers and listeners.

To download the data (~232 MB) please run the following commands. Notice, that you first need to accept the Terms Of Use here. Upon review we will email to you the necessary link that you need to put inside the desingated location of the download_data.sh file.

cd shapeglot/
./download_data.sh

The downloaded data will be stored in shapeglot/data

Usage

To easily expose the main functionalities of our paper, we prepared some simple, instructional notebooks.

  1. To tokenize, prepare and visualize the chairsInContext dataset, please look/run:
    shapeglot/notebooks/prepare_chairs_in_context_data.ipynb
  1. To train a neural listener (only ~10 minutes on a single modern GPU):
    shapeglot/notebooks/train_listener.ipynb

Note: This repo contains limited functionality compared to what was presented in the paper. This is because our original (much heavier) implementation is in low-level TensorFlow and python 2.7. If you need more functionality (e.g. pragmatic-speakers) and you are OK with Tensorflow, please email [email protected] .

Citation

If you find our work useful in your research, please consider citing:

@article{shapeglot,
  title={ShapeGlot: Learning Language for Shape Differentiation},
  author={Achlioptas, Panos and Fan, Judy and Hawkins, Robert X. D. and Goodman, Noah D. and Guibas, Leonidas J.},
  journal={CoRR},
  volume={abs/1905.02925},
  year={2019}
}

License

This provided code is licensed under the terms of the MIT license (see LICENSE for details).

Owner
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022