Blind Video Temporal Consistency via Deep Video Prior

Overview

deep-video-prior (DVP)

Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior

PyTorch implementation | paper | project website

Introduction

Our method is a general framework to improve the temporal consistency of video processed by image algorithms. For example, combining image colorization or image dehazing algorithm with our framework, we can achieve the goal of video colorization or video dehazing.

Dependencey

Environment

This code is based on tensorflow. It has been tested on Ubuntu 18.04 LTS.

Anaconda is recommended: Ubuntu 18.04 | Ubuntu 16.04

After installing Anaconda, you can setup the environment simply by

conda env create -f environment.yml
conda activate deep-video-prior

Download VGG model

cd deep-video-prior
python download_VGG.py
unzip VGG_Model.zip

Inference

Demo

bash test.sh

The results are placed in ./result

Use your own data

For the video with unimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL  --output ./result/OWN_DATA

For the video with multimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL --with_IRT 1 --IRT_initialization 1 --output ./result/OWN_DATA

Other information

  -h, --help            show this help message and exit
  --task TASK           Name of task
  --input INPUT         Dir of input video
  --processed PROCESSED
                        Dir of processed video
  --output OUTPUT       Dir of output video
  --use_gpu USE_GPU     Use gpu or not
  --loss {perceptual,l1,l2}
                        Chooses which loss to use. perceptual, l1, l2
  --network {unet}      Chooses which model to use. unet, fcn
  --coarse_to_fine_speedup COARSE_TO_FINE_SPEEDUP
                        Use coarse_to_fine_speedup for training
  --with_IRT WITH_IRT   Sse IRT or not, set this to 1 if you want to solve
                        multimodal inconsistency
  --IRT_initialization IRT_INITIALIZATION
                        Sse initialization for IRT
  --large_video LARGE_VIDEO
                        Set this to 1 when the number of video frames are
                        large, e.g., more than 1000 frames
  --save_freq SAVE_FREQ
                        Save frequency of epochs
  --max_epoch MAX_EPOCH
                        The max number of epochs for training
  --format FORMAT       Format of output image

Citation

If you find this work useful for your research, please cite:

@inproceedings{lei2020dvp,
  title={Blind Video Temporal Consistency via Deep Video Prior},
  author={Lei, Chenyang and Xing, Yazhou and Chen, Qifeng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}                

Contact

Please contact me if there is any question (Chenyang Lei, [email protected])

Beyond the tasks we evaluated

Researcher found that Blind Temporal Consistency (e.g., DVP) can be applied to many more tasks!

Owner
Chenyang LEI
CS Ph.D. student at HKUST
Chenyang LEI
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023