EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

Overview

EntityQuestions

This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-centric Questions Challenge Dense Retrievers by Chris Sciavolino*, Zexuan Zhong*, Jinhyuk Lee, and Danqi Chen (* equal contribution).

[9/16/21] This repo is not yet set in stone, we're still putting finishing touches on the tooling and documentation :) Thanks for your patience!

Quick Links

Installation

You can download a .zip file of the dataset here, or using wget with the command:

$ wget https://nlp.cs.princeton.edu/projects/entity-questions/dataset.zip

We include the dependencies needed to run the code in this repository. We recommend having a separate miniconda environment for running DPR code. You can create the environment using the following commands:

$ conda create -n EntityQ python=3.6
$ conda activate EntityQ
$ pip install -r requirements.txt

Dataset Overview

The unzipped dataset directory should have the following structure:

dataset/
    | train/
        | P*.train.json     // all randomly sampled training files 
    | dev/
        | P*.dev.json       // all randomly sampled development files
    | test/
        | P*.test.json      // all randomly sampled testing files
    | one-off/
        | common-random-buckets/
            | P*/
                | bucket*.test.json
        | no-overlap/
            | P*/
                | P*_no_overlap.{train,dev,test}.json
        | nq-seen-buckets/
            | P*/
                bucket*.test.json
        | similar/
            | P*
                | P*_similar.{train,dev,test}.json

The main dataset is included in dataset/ under train/, dev/, and test/, each containing the randomly sampled training, development, and testing subsets, respectively. For example, the evaluation set for place-of-birth (P19) can be found in the dataset/test/P19.test.json file.

We also include all of the one-off datasets we used to generate the tables/figures presented in the paper under dataset/one-off/, explained below:

  • one-off/common-random-buckets/ contains buckets of 1,000 randomly sampled examples, used to produce Fig. 1 of the paper (specifically for rand-ent).
  • one-off/no-overlap/ contains the training/development splits for our analyses in Section 4.1 of the paper (we do not use the testing split in our analysis). These training/development sets have subject entities with no token overlap with subject entities of the randomly sampled test set (specifically for all fine-tuning in Table 2).
  • one-off/nq-seen-buckets/ contains buckets of questions with subject entities that overlap with subject entities seen in the NQ training set, used to produce Fig. 1 of the paper (specifically for train-ent).
  • one-off/similar contains the training/development splits for the syntactically different but symantically equal question sets, used for our analyses in Section 4.1 (specifically the similar rows). Again, we do not use the testing split in our analysis. These questions are identical to one-off/no-overlap/ but use a different question template.

Retrieving DPR Results

Our analysis is based on a previous version of the DPR repository (specifically the Oct. 5 version w. hash 27a8436b070861e2fff481e37244009b48c29c09), so our commands may not be up-to-date with the March 2021 release. That said, most of the commands should be clearly transferable.

First, we recommend following the setup guide from the official DPR repository. Once set up, you can download the relevant pre-trained models/indices using their download_data.py script. For our analysis, we used the DPR-NQ model and the DPR-Multi model. To run retrieval using a pre-trained model, you'll minimally need to download:

  1. The pre-trained model
  2. The Wikipedia passage splits
  3. The encoded Wikipedia passage FAISS index
  4. A question/answer dataset

With this, you can use the following python command:

python dense_retriever.py \
    --batch_size 512 \
    --model_file "path/to/pretrained/model/file.cp" \
    --qa_file "path/to/qa/dataset/to/evaluate.json" \
    --ctx_file "path/to/wikipedia/passage/splits.tsv" \
    --encoded_ctx_file "path/to/encoded/wikipedia/passage/index/" \
    --save_or_load_index \
    --n-docs 100 \
    --validation_workers 1 \
    --out_file "path/to/desired/output/location.json"

We had access to a single 11Gb Nvidia RTX 2080Ti GPU w. 128G of RAM when running DPR retrieval.

Retrieving BM25 Results

We use the Pyserini implementation of BM25 for our analysis. We use the default settings and index on the same passage splits downloaded from the DPR repository. We include steps to re-create our BM25 results below.

First, we need to pre-process the DPR passage splits into the proper format for BM25 indexing. We include this file in bm25/build_bm25_ctx_passages.py. Rather than writing all passages into a single file, you can optionally shard the passages into multiple files (specified by the n_shards argument). It also creates a mapping from the passage ID to the title of the article the passage is from. You can use this file as follows:

python bm25/build_bm25_ctx_passages.py \
    --wiki_passages_file "path/to/wikipedia/passage/splits.tsv" \
    --outdir "path/to/desired/output/directory/" \
    --title_index_path "path/to/desired/output/directory/.json" \
    --n_shards number_of_shards_of_passages_to_write

Now that you have all the passages in files, you can build the BM25 index using the following command:

python -m pyserini.index -collection JsonCollection \
    -generator DefaultLuceneDocumentGenerator \
    -threads 4 \
    -input "path/to/generated/passages/folder/" \
    -index "path/to/desired/index/folder/" \
    -storePositions -storeDocvectors -storeRaw

Once the index is built, you can use it in the bm25/bm25_retriever.py script to get retrieval results for an input file:

python bm25/bm25_retriever.py \
    --index_path "path/to/built/bm25/index/directory/" \
    --passage_id_to_title_path "path/to/title_index_path/from_step_1.json" \
    --input "path/to/input/qa/file.json" \
    --output_dir "path/to/output/directory/"

By default, the script will retrieve 100 passages (--n_docs), use string matching to determine answer presence (--answer_type), and take in .json files (--input_file_type). You can optionally provide a glob using the --glob flag. The script writes the results to the file with the same name as the input file, but in the output directory.

Evaluating Retriever Results

We provide an evaluation script in utils/accuracy.py. The expected format is equivalent to DPR's output format. It either accepts a single file to evaluate, or a glob of multiple files if the --glob option is set. To evaluate a single file, you can use the following command:

python utils/accuracy.py \
    --results "path/to/retrieval/results.json" \
    --k_values 1,5,20,100

or with a glob with:

python utils/accuracy.py \
    --results="path/to/glob*.test.json" \
    --glob \
    --k_values 1,5,20,100

Bugs or Questions?

Feel free to open an issue on this GitHub repository and we'd be happy to answer your questions as best we can!

Citation

If you use our dataset or code in your research, please cite our work:

@inproceedings{sciavolino2021simple,
   title={Simple Entity-centric Questions Challenge Dense Retrievers},
   author={Sciavolino, Christopher and Zhong, Zexuan and Lee, Jinhyuk and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023