Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Overview

Is it Time to Replace CNNs with Transformers for Medical Images?

Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to automated medical image diagnosis. Recently, vision transformers (ViTs) have appeared as a competitive alternative to CNNs, yielding similar levels of performance while possessing several interesting properties that could prove beneficial for medical imaging tasks. In this work, we explore whether it is time to move to transformer-based models or if we should keep working with CNNs - can we trivially switch to transformers? If so, what are the advantages and drawbacks of switching to ViTs for medical image diagnosis? We consider these questions in a series of experiments on three mainstream medical image datasets. Our findings show that, while CNNs perform better when trained from scratch, off-the-shelf vision transformers using default hyperparameters are on par with CNNs when pretrained on ImageNet, and outperform their CNN counterparts when pretrained using self-supervision.

Enviroment setup

To build using the docker file use the following command
docker build -f Dockerfile -t med_trans \
--build-arg UID=$(id -u) \
--build-arg GID=$(id -g) \
--build-arg USER=$(whoami) \
--build-arg GROUP=$(id -g -n) .

Usage:

  • Training: python classification.py
  • Training with DINO: python classification.py --dino
  • Testing (using json file): python classification.py --test
  • Testing (using saved checkpoint): python classification.py --checkpoint CheckpointName --test
  • Fine tune the learning rate: python classification.py --lr_finder

Configuration (json file)

  • dataset_params
    • dataset: Name of the dataset (ISIC2019, APTOS2019, DDSM)
    • data_location: Location that the datasets are located
    • train_transforms: Defines the augmentations for the training set
    • val_transforms: Defines the augmentations for the validation set
    • test_transforms: Defines the augmentations for the test set
  • dataloader_params: Defines the dataloader parameters (batch size, num_workers etc)
  • model_params
    • backbone_type: type of the backbone model (e.g. resnet50, deit_small)
    • transformers_params: Additional hyperparameters for the transformers
      • img_size: The size of the input images
      • patch_size: The patch size to use for patching the input
      • pretrained_type: If supervised it loads ImageNet weights that come from supervised learning. If dino it loads ImageNet weights that come from sefl-supervised learning with DINO.
    • pretrained: If True, it uses ImageNet pretrained weights
    • freeze_backbone: If True, it freezes the backbone network
    • DINO: It controls the hyperparameters for when training with DINO
  • optimization_params: Defines learning rate, weight decay, learning rate schedule etc.
    • optimizer: The default optimizer's parameters
      • type: The optimizer's type
      • autoscale_rl: If True it scales the learning rate based on the bach size
      • params: Defines the learning rate and the weght decay value
    • LARS_params: If use=True and bach size >= batch_act_thresh it uses LARS as optimizer
    • scheduler: Defines the learning rate schedule
      • type: A list of schedulers to use
      • params: Sets the hyperparameters of the optimizers
  • training_params: Defines the training parameters
    • model_name: The model's name
    • val_every: Sets the frequency of the valiidation step (epochs - float)
    • log_every: Sets the frequency of the logging (iterations - int)
    • save_best_model: If True it will save the bast model based on the validation metrics
    • log_embeddings: If True it creates U-maps on each validation step
    • knn_eval: If True, during validation it will also calculate the scores based on knn evalutation
    • grad_clipping: If > 0, it clips the gradients
    • use_tensorboard: If True, it will use tensorboard for logging instead of wandb
    • use_mixed_precision: If True, it will use mixed precision
    • save_dir: The dir to save the model's checkpoints etc.
  • system_params: Defines if GPUs are used, which GPUs etc.
  • log_params: Project and run name for the logger (we are using Weights & Biases by default)
  • lr_finder: Define the learning rate parameters
    • grid_search_params
      • min_pow, min_pow: The min and max power of 10 for the search
      • resolution: How many different learning rates to try
      • n_epochs: maximum epochs of the training session
      • random_lr: If True, it uses random learning rates withing the accepted range
      • keep_schedule: If True, it keeps the learning rate schedule
      • report_intermediate_steps: If True, it logs if validates throughout the training sessions
  • transfer_learning_params: Turns on or off transfer learning from pretrained models
    • use_pretrained: If True, it will use a pretrained model as a backbone
    • pretrained_model_name: The pretrained model's name
    • pretrained_path: If the prerained model's dir
Owner
Christos Matsoukas
PhD student in Deep Learning @ KTH Royal Institute of Technology
Christos Matsoukas
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022