Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

Overview

Swin Transformer V2: Scaling Up Capacity and Resolution

Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution by Ze Liu, Han Hu et al. (Microsoft Research Asia).

This repository includes a pure PyTorch implementation of the Swin Transformer V2.

The official Swin Transformer V1 implementation is available here. Currently (10.01.2022), an official implementation of the Swin Transformer V2 is not publicly available.

Installation

You can simply install the Swin Transformer V2 implementation as a Python package by using pip.

pip install git+https://github.com/ChristophReich1996/Involution

Alternatively, you can clone the repository and use the implementation in swin_transformer_v2 directly in your project.

Usage

This implementation provides the configurations reported in the paper (SwinV2-T, SwinV2-S, etc.). You can build the model by calling the corresponding function. Please note that the Swin Transformer V2 (SwinTransformerV2 class) implementation returns the feature maps of each stage of the network (List[torch.Tensor]). If you want to use this implementation for image classification simply wrap this model and take the final feature map.

from swin_transformer_v2 import SwinTransformerV2

from swin_transformer_v2 import swin_transformer_v2_t, swin_transformer_v2_s, swin_transformer_v2_b, \
    swin_transformer_v2_l, swin_transformer_v2_h, swin_transformer_v2_g

# SwinV2-T
swin_transformer: SwinTransformerV2 = swin_transformer_v2_t(in_channels=3,
                                                            window_size=8,
                                                            input_resolution=(256, 256),
                                                            sequential_self_attention=False,
                                                            use_checkpoint=False)

If you want to change the resolution and/or the window size for fine-tuning or inference pleas use the update_resolution method.

# Change resolution and window size of the model
swin_transformer.update_resolution(new_window_size=16, new_input_resolution=(512, 512))

In case you want to use a custom configuration you can use the SwinTransformerV2 class. The constructor method takes the following parameters.

Parameter Description Type
in_channels Number of input channels int
depth Depth of the stage (number of layers) int
downscale If true input is downsampled (see Fig. 3 or V1 paper) bool
input_resolution Input resolution Tuple[int, int]
number_of_heads Number of attention heads to be utilized int
window_size Window size to be utilized int
shift_size Shifting size to be used int
ff_feature_ratio Ratio of the hidden dimension in the FFN to the input channels int
dropout Dropout in input mapping float
dropout_attention Dropout rate of attention map float
dropout_path Dropout in main path float
use_checkpoint If true checkpointing is utilized bool
sequential_self_attention If true sequential self-attention is performed bool

This file includes a full example how to use this implementation.

Disclaimer

This is a very experimental implementation based on the Swin Transformer V2 paper and the official implementation of the Swin Transformer V1. Since an official implementation of the Swin Transformer V2 is not yet published, it is not possible to say to which extent this implementation might differ from the original one. If you have any issues with this implementation please raise an issue.

Reference

@article{Liu2021,
    title={{Swin Transformer V2: Scaling Up Capacity and Resolution}},
    author={Liu, Ze and Hu, Han and Lin, Yutong and Yao, Zhuliang and Xie, Zhenda and Wei, Yixuan and Ning, Jia and Cao, 
            Yue and Zhang, Zheng and Dong, Li and others},
    journal={arXiv preprint arXiv:2111.09883},
    year={2021}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022