A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

Overview

Pneumonia Classification

This is a simple REST api that is served to classify pneumonia given an X-ray image of a chest of a human being. The following are expected results when the model does it's classification.

  1. pneumonia bacteria
  2. pneumonia virus
  3. normal

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model

We are using a simple Multi Layer Perceptron (MLP) achitecture to do the categorical image classification on chest-x-ray images which looks simply as follows:

class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dropout=.5):
        super(MLP, self).__init__()
        self.input_fc = nn.Linear(input_dim, 250)
        self.hidden_fc = nn.Linear(250, 100)
        self.output_fc = nn.Linear(100, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size = x.shape[0]
        x = x.view(batch_size, -1)
        x = F.relu(self.input_fc(x))
        x = self.dropout(x)
        x = F.relu(self.hidden_fc(x))
        x = self.dropout(x)
        outputs = self.output_fc(x)
        return outputs, x

All images are transformed to grayscale.

Model Metrics

The following table shows all the metrics summary we get after training the model for few 10 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
chest-x-ray.pt pneumonia classification using Multi Layer Perceprton (MLP) 73.73% 73.73% 72.47% 0.621 0.621 0.639

Classification report

This classification report is based on the first batch of the test dataset i used which consist of 64 images in a batch.

# precision recall f1-score support
micro avg 100% 81% 90% 4096
macro avg 100% 81% 90% 4096
weighted avg 100% 81% 90% 4096

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 64 images in a batch:

Pneumonia classification

If you hit the server at http://localhost:3001/api/pneumonia you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/pneumonia with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Using curl

Make sure that you have the image named normal.jpeg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/pneumonia with the file normal.jpeg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/pneumonia

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class_label": "NORMAL",
    "label": 0,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.8500000238418579
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.07000000029802322
      },
      {
        "class_label": "PNEUMONIA VIRAL",
        "label": 2,
        "probability": 0.07999999821186066
      }
    ],
    "probability": 0.8500000238418579
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://127.0.0.1:3001/api/pneumonia", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .pt file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022