DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

Overview

DanceTrack

DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion.

DanceTrack provides box and identity annotations.

DanceTrack contains 100 videos, 40 for training(annotations public), 25 for validation(annotations public) and 35 for testing(annotations unpublic). For evaluating on test set, please see CodaLab.


Paper

DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion

Dataset

Download the dataset from Google Drive or Baidu Drive (code:awew).

Organize as follows:

{DanceTrack ROOT}
|-- dancetrack
|   |-- train
|   |   |-- dancetrack0001
|   |   |   |-- img1
|   |   |   |   |-- 00000001.jpg
|   |   |   |   |-- ...
|   |   |   |-- gt
|   |   |   |   |-- gt.txt            
|   |   |   |-- seqinfo.ini
|   |   |-- ...
|   |-- val
|   |   |-- ...
|   |-- test
|   |   |-- ...
|   |-- train_seqmap.txt
|   |-- val_seqmap.txt
|   |-- test_seqmap.txt
|-- TrackEval
|-- tools
|-- ...

We align our dataset annotations with MOT, so each line in gt.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, 1, 1, 1

Evaluation

We use ByteTrack as an example of using DanceTrack. For training details, please see instruction. We provide the trained models in Google Drive or or Baidu Drive (code:awew).

To do evaluation with our provided tookit, we organize the results of validation set as follows:

{DanceTrack ROOT}
|-- val
|   |-- TRACKER_NAME
|   |   |-- dancetrack000x.txt
|   |   |-- ...
|   |-- ...

where dancetrack000x.txt is the output file of the video episode dancetrack000x, each line of which contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Then, simply run the evalution code:

python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val  --METRICS HOTA CLEAR Identity  --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True   --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER ''  --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME 
Tracker HOTA DetA AssA MOTA IDF1
ByteTrack 47.1 70.5 31.5 88.2 51.9

Besides, we also provide the visualization script. The usage is as follow:

python3 tools/txt2video_dance.py --img_path dancetrack --split val --tracker TRACKER_NAME

Competition

Organize the results of test set as follows:

{DanceTrack ROOT}
|-- test
|   |-- tracker
|   |   |-- dancetrack000x.txt
|   |   |-- ...

Each line of dancetrack000x.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Archive tracker folder to tracker.zip and submit to CodaLab. Please note: (1) archive tracker folder, instead of txt files. (2) the folder name must be tracker.

The return will be:

Tracker HOTA DetA AssA MOTA IDF1
tracker 47.7 71.0 32.1 89.6 53.9

For more detailed metrics and metrics on each video, click on download output from scoring step in CodaLab.

Run the visualization code:

python3 tools/txt2video_dance.py --img_path dancetrack --split test --tracker tracker

Joint-Training

We use joint-training with other datasets to predict mask, pose and depth. CenterNet is provided as an example. For details of joint-trainig, please see joint-training instruction. We provide the trained models in Google Drive or Baidu Drive(code:awew).

For mask demo, run

cd CenterNet/src
python3 demo.py ctseg --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_mask.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ctseg/default/debug --video_name dancetrack000x_mask.avi

For pose demo, run

cd CenterNet/src
python3 demo.py multi_pose --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_pose.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/multi_pose/default/debug --video_name dancetrack000x_pose.avi

For depth demo, run

cd CenterNet/src
python3 demo.py ddd --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_kitti_ddd.pth --debug 4 --tracking --test_focal_length 640 --world_size 16 --out_size 128
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ddd/default/debug --video_name dancetrack000x_ddd.avi

Agreement

  • The dataset of DanceTrack is available for non-commercial research purposes only.
  • All videos and images of DanceTrack are obtained from the Internet which are not property of HKU, CMU or ByteDance. These three organizations are not responsible for the content nor the meaning of these videos and images.
  • The code of DanceTrack is released under the MIT License.

Acknowledgement

The evaluation metrics and code are from MOT Challenge and TrackEval. The inference code is from ByteTrack. The joint-training code is modified from CenterTrack and CenterNet, where the instance segmentation code is from CenterNet-CondInst. Thanks for their wonderful and pioneering works !

Citation

If you use DanceTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entry:

@article{peize2021dance,
  title   =  {DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion},
  author  =  {Peize Sun and Jinkun Cao and Yi Jiang and Zehuan Yuan and Song Bai and Kris Kitani and Ping Luo},
  journal =  {arXiv preprint arXiv:2111.14690},
  year    =  {2021}
}
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022