2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

Related tags

Deep LearningTFill
Overview

TFill

arXiv | Project

This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity Image Completion" by Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai and Dinh Phung. Given masked images, the proposed TFill model is able to generate high-fidelity plausible results on various settings.

Examples

teaser

Framework

We propose the two-stages image completion framework, where the upper content inference network (TFill-Coarse) generates semantically correct content using a transformer encoder to directly capture the global context information; the lower appearance refinement network (TFill-refined) copies global visible and generated features to holes.

teaser

Getting started

  • Clone this repo:
git clone https://github.com/lyndonzheng/TFill
cd TFill

Requirements

The original model is trained and evaluated with Pytorch v1.9.1, which cannot be visited in current PyTorch. Therefore, we create a new environment with Pytorch v1.10.0 to test the model, where the performance is the same.

A suitable conda environment named Tfill can be created and activated with:

conda env create -f environment.yaml
conda activate TFill

Runing pretrained models

Download the pre-trained models using the following links (CelebA-HQ, FFHQ, ImageNet, Plcases2 ) and put them undercheckpoints/ directory. It should have the following structure:

./checkpoints/
├── celeba
│   ├── latest_net_D.pth
│   ├── latest_net_D_Ref.pth
│   ├── latest_net_E.pth
│   ├── latest_net_G.pth
│   ├── latest_net_G_Ref.pth
│   ├── latest_net_T.pth
├── ffhq
│   ├── ...
├── ...
  • Test the model
sh ./scripts/test.sh

For different models, the users just need to modify lines 2-4, including name,img_file,mask_file. For instance, we can replace the celeba to imagenet.

The default results will be stored under the results/ folder, in which:

  • examples/: shows original and masked images;
  • img_out/: shows upsampled Coarse outputs;
  • img_ref_out/: shows the final Refined outputs.

Datasets

  • face dataset:
    • 24,183 training images and 2,824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset.
    • 60,000 training images and 10,000 test images from FFHQ provided by StyleGAN.
  • natural scenery: original training and val images from Places2.
  • object original training images from ImageNet.

Traning

  • Train a model (two stage: Coarse and Refinement)
sh ./scripts/train.sh

The default setting is for the top Coarse training. The users just need to replace the coarse with refine at line 6. Then, the model can continue training for high-resolution image completion. More hyper-parameter can be in options/.

The coarse results using transformer and restrictive CNN is impressive, which provides plausible results for both foreground objects and background scene.

teaser teaser

GUI

The GUI operation is similar to our previous GUI in PIC, where steps are also the same.

Basic usage is:

sh ./scripts/ui.sh 

In gui/ui_model.py, users can modify the img_root(line 30) and the corresponding img_files(line 31) to randomly edit images from the testing dataset.

Editing Examples

  • Results (original, output) for face editing

teaser

  • Results (original, masked input, output) for nature scene editing

teaser

Next

  • Higher-resolution pluralistic image completion

License

This work is licensed under a MIT License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

The code also uses our previous PIC. If you use this code for your research, please cite our papers.

@misc{zheng2021tfill,
      title={Bridging Global Context Interactions for High-Fidelity Image Completion},
      author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei and Phung, Dinh},
      year={2021},
      eprint={2104.00845},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022