It's a powerful version of linebot

Overview

CTPS-FINAL

Linbot-sever.py

主程式

Algorithm.py

推薦演算法,媒合餐廳端資料與顧客端資料

config.ini

儲存 channel-access-token、channel-secret 資料

Preface

生活在成大將近4年,我們每天的午餐時間看著形形色色的店家,看似玲瑯滿目卻都吃膩了,中午覓食已經從期待變成壓力,每天問著「待會吃什麼?」,然後花費大量時間和心力,還是不知道要午餐吃什麼。因此我們希望運用Computational Thinking and Problem Solving 的思維,幫助大家解決這個困擾已久的問題。

Problem Definition

My target problem - 解決成大師生不知道午餐吃什麼的困擾?

Problem Decomposition

  • :成大師生
  • :午餐煩惱
  • :週一到週五 11點 ~ 14點
  • :成大周遭 1.5km 以內距離
  • constrain : 交通限制(交通工具)、店家營業時間限制、用戶人數(餐廳是否能容納)、預計等待及用餐時間

Pattern Recognition

  1. 大家通常到正餐時間才會想要吃甚麼
  2. 大家移動的距離有限,如果下午1點還有課,就會在學校附近用餐
  3. 同類型食物太頻繁吃會吃膩
  4. 學生會考慮cp值(有價格區間考量)
  5. 如果店家以人潮眾多就傾向換一間店家
  6. 會因為天氣而影響選擇(例如很熱,就會找有冷氣的餐廳)
  7. 朋友或認識的同學會一起用餐

Abstraction

(把Problem Decomposition的細項問題化)

  • 店家資料
      1. 如何取得店家資料?
      1. 如何確保店家資料即時性?
  • 用戶資料
      1. 如何取得用戶資料?
      1. 如何做到使用者優化?
  • 演算法
      1. 如何根據實際狀況設計演算法
      1. 怎麼測試演算法結果是否符合用戶需求
  • 訊息回推
      1. 用什麼管道回送推薦清單
      1. 介面如何優化
      1. 怎麼得知用戶實際使用情況

Algorithm

  • 店家資料
    • 如何取得店家資料?
      • 利用 google maps 爬蟲
      • 實地探索(地點限制在成大周圍,所以有一定可行性)
    • 如何確保店家資料即時性?
      • 設計用戶回報機制
      • 定期網路爬蟲
  • 用戶資料
    • 如何取得用戶資料?
      • 利用 linbot 與使用者溝通,取得使用者需求
    • 如何做到使用者優化?
      • 利用 richmenus 串接 linbot,藉由圖文選單輸入
  • 演算法
    • 如何根據實際狀況設計演算法
      • 找外在生活條件(例如 : 天氣很熱,那冷氣的需求權重就提高一點)
    • 怎麼測試演算法結果是否符合用戶需求
      • 請朋友實際使用,並根據意見做出修改
  • 訊息回推
    • 用什麼管道回送推薦清單
      • Linebot
    • 介面如何優化
      • 建置模板按鈕,讓畫面看起來乾淨一點
    • 怎麼得知用戶實際使用情況
      • 設計用戶評分機制
      • 根據用戶評分或意見,進行修正

Solution Proposal

final report ppt & demo

References

Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022