A graph adversarial learning toolbox based on PyTorch and DGL.

Related tags

Deep LearningGraphWar
Overview

GraphWar: Arms Race in Graph Adversarial Learning

NOTE: GraphWar is still in the early stages and the API will likely continue to change.

πŸš€ Installation

Please make sure you have installed PyTorch and Deep Graph Library(DGL).

# Comming soon
pip install -U graphwar

or

# Recommended
git clone https://github.com/EdisonLeeeee/GraphWar.git && cd GraphWar
pip install -e . --verbose

where -e means "editable" mode so you don't have to reinstall every time you make changes.

Get Started

Assume that you have a dgl.DGLgraph instance g that describes you dataset.

A simple targeted attack

from graphwar.attack.targeted import RandomAttack
attacker = RandomAttack(g)
attacker.attack(1, num_budgets=3) # attacking target node `1` with `3` edges 
attacked_g = attacker.g()
edge_flips = attacker.edge_flips()

A simple untargeted attack

from graphwar.attack.untargeted import RandomAttack
attacker = RandomAttack(g)
attacker.attack(num_budgets=0.05) # attacking the graph with 5% edges perturbations
attacked_g = attacker.g()
edge_flips = attacker.edge_flips()

Implementations

In detail, the following methods are currently implemented:

Attack

Targeted Attack

Methods Venue
RandomAttack A simple random method that chooses edges to flip randomly.
DICEAttack Marcin Waniek et al. πŸ“ Hiding Individuals and Communities in a Social Network, Nature Human Behavior'16
Nettack Daniel ZΓΌgner et al. πŸ“ Adversarial Attacks on Neural Networks for Graph Data, KDD'18
FGAttack Jinyin Chen et al. πŸ“ Fast Gradient Attack on Network Embedding, arXiv'18
Jinyin Chen et al. πŸ“ Link Prediction Adversarial Attack Via Iterative Gradient Attack, IEEE Trans'20
Hanjun Dai et al. πŸ“ Adversarial Attack on Graph Structured Data, ICML'18
GFAttack Heng Chang et al. πŸ“ A Restricted Black - box Adversarial Framework Towards Attacking Graph Embedding Models, AAAI'20
IGAttack Huijun Wu et al. πŸ“ Adversarial Examples on Graph Data: Deep Insights into Attack and Defense, IJCAI'19
SGAttack Jintang Li et al. πŸ“ Adversarial Attack on Large Scale Graph, TKDE'21

Untargeted Attack

Methods Venue
RandomAttack A simple random method that chooses edges to flip randomly
DICEAttack Marcin Waniek et al. πŸ“ Hiding Individuals and Communities in a Social Network, Nature Human Behavior'16
FGAttack Jinyin Chen et al. πŸ“ Fast Gradient Attack on Network Embedding, arXiv'18
Jinyin Chen et al. πŸ“ Link Prediction Adversarial Attack Via Iterative Gradient Attack, IEEE Trans'20
Hanjun Dai et al. πŸ“ Adversarial Attack on Graph Structured Data, ICML'18
Metattack Daniel ZΓΌgner et al. πŸ“ Adversarial Attacks on Graph Neural Networks via Meta Learning, ICLR'19
PGD, MinmaxAttack Kaidi Xu et al. πŸ“ Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective, IJCAI'19

Defense

Model-Level

Methods Venue
MedianGCN Liang Chen et al. πŸ“ Understanding Structural Vulnerability in Graph Convolutional Networks, IJCAI'21
RobustGCN Dingyuan Zhu et al. πŸ“ Robust Graph Convolutional Networks Against Adversarial Attacks, KDD'19

Data-Level

Methods Venue
JaccardPurification Huijun Wu et al. πŸ“ Adversarial Examples on Graph Data: Deep Insights into Attack and Defense, IJCAI'19

More details of literatures and the official codes can be found in Awesome Graph Adversarial Learning.

Comments
  • Benchmark Results of Attack Performance

    Benchmark Results of Attack Performance

    Hi, thanks for sharing the awesome repo with us! I recently run the attack sample code but the resultpgd_attack.py and random_attack.py under examples/attack/untargeted, but the accuracies of both evasion and poison attack seem not to decrease.

    I'm pretty confused by the attack results. For CV models, pgd attack easily decreases the accuracy to nearly random guesses, but the results of GreatX seem not to consent with CV models. Is it because the number of the perturbed edges is too small?

    Here are the results of pgd_attack.py

    Processing...
    Done!
    Training...
    100/100 [==============================] - Total: 874.37ms - 8ms/step- loss: 0.0524 - acc: 0.996 - val_loss: 0.625 - val_acc: 0.815
    Evaluating...
    1/1 [==============================] - Total: 1.82ms - 1ms/step- loss: 0.597 - acc: 0.843
    Before attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.59718  β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.842555 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    PGD training...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 200/200 [00:02<00:00, 69.74it/s]
    Bernoulli sampling...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:00<00:00, 804.86it/s]
    Evaluating...
    1/1 [==============================] - Total: 2.11ms - 2ms/step- loss: 0.603 - acc: 0.842
    After evasion attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.603293 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.842052 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Training...
    100/100 [==============================] - Total: 535.83ms - 5ms/step- loss: 0.124 - acc: 0.976 - val_loss: 0.728 - val_acc: 0.779
    Evaluating...
    1/1 [==============================] - Total: 1.74ms - 1ms/step- loss: 0.766 - acc: 0.827
    After poisoning attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.76604  β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.826962 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    

    Here are the results of random_attack.py

    Training...
    100/100 [==============================] - Total: 600.92ms - 6ms/step- loss: 0.0615 - acc: 0.984 - val_loss: 0.626 - val_acc: 0.811
    Evaluating...
    1/1 [==============================] - Total: 1.93ms - 1ms/step- loss: 0.564 - acc: 0.832
    Before attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.564449 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.832495 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Peturbing graph...: 253it [00:00, 4588.44it/s]
    Evaluating...
    1/1 [==============================] - Total: 2.14ms - 2ms/step- loss: 0.585 - acc: 0.826
    After evasion attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.584646 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.826459 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Training...
    100/100 [==============================] - Total: 530.04ms - 5ms/step- loss: 0.0767 - acc: 0.98 - val_loss: 0.574 - val_acc: 0.791
    Evaluating...
    1/1 [==============================] - Total: 1.77ms - 1ms/step- loss: 0.695 - acc: 0.813
    After poisoning attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.695349 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.81338  β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    
    opened by ziqi-zhang 2
  • SG Attack example cannot run as expected on cuda

    SG Attack example cannot run as expected on cuda

    Hello, I got some error when I run SG Attack's example code on cuda device:

    Traceback (most recent call last):
      File "src/test.py", line 50, in <module>
        attacker.attack(target)
      File "/greatx/attack/targeted/sg_attack.py", line 212, in attack
        subgraph = self.get_subgraph(target, target_label, best_wrong_label)
      File "/greatx/attack/targeted/sg_attack.py", line 124, in get_subgraph
        self.label == best_wrong_label)[0].cpu().numpy()
    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:3 and cpu!
    

    I found self.label is on cuda device, but best_wrong_label is on cpu. https://github.com/EdisonLeeeee/GreatX/blob/73eac351fdae842dbd74967622bd0e573194c765/greatx/attack/targeted/sg_attack.py#L123-L124

    I remove line94 .cpu(), everything is going well and no error report

    https://github.com/EdisonLeeeee/GreatX/blob/73eac351fdae842dbd74967622bd0e573194c765/greatx/attack/targeted/sg_attack.py#L94-L96

    I found there is a commit that adds .cpu end of line 94, so I dont know it's a bug or something else🀨

    opened by beiyanpiki 1
  • problem with metattack

    problem with metattack

    Thanks for this wonderful repo. However, when I run the metattack example ,the result is not promising Here is my result when attack Cora with metattack Training... 100/100 [====================] - Total: 520.68ms - 5ms/step- loss: 0.0713 - acc: 0.996 - val_loss: 0.574 - val_acc: 0.847 Evaluating... 1/1 [====================] - Total: 2.01ms - 2ms/step- loss: 0.522 - acc: 0.847 Before attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.521524 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.846579 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•› Peturbing graph...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 253/253 [01:00<00:00, 4.17it/s]Evaluating... 1/1 [====================] - Total: 2.08ms - 2ms/step- loss: 0.528 - acc: 0.844 After evasion attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.528431 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.844064 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•› Training... 32/100 [=====>..............] - ETA: 0s- loss: 0.212 - acc: 0.956 - val_loss: 0.634 - val_acc: 0.807 100/100 [====================] - Total: 407.58ms - 4ms/step- loss: 0.0601 - acc: 0.996 - val_loss: 0.704 - val_acc: 0.787 Evaluating... 1/1 [====================] - Total: 1.66ms - 1ms/step- loss: 0.711 - acc: 0.819 After poisoning attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.710625 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.818913 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›

    opened by shanzhiq 1
  • Fix a venue of FeaturePropagation

    Fix a venue of FeaturePropagation

    Rossi's FeaturePropagation paper was submitted to ICLR'21 but was rejected. So how about updating with arXiv? This paper has not yet been accepted by other conferences.

    bug documentation 
    opened by jeongwhanchoi 1
  • Add ratio for `attacker.data()`, `attacker.edge_flips()`, and `attacker.feat_flips()`

    Add ratio for `attacker.data()`, `attacker.edge_flips()`, and `attacker.feat_flips()`

    This PR allows specifying an argument ratio for attacker.edge_flips(), and attacker.feat_flips(), which determines how many generated perturbations were used for further evaluation/visualization. Correspondingly, attacker.data() holds edge_ratio and feat_ratio for these two methods when constructing perturbed graph.

    • Example
    attacker = ...
    attacker.reset()
    attacker.attack(...)
    
    # Case1: Only 50% of generated edge perturbations were used
    trainer.evaluate(attacker.data(edge_ratio=0.5), mask=...)
    
    # Case2: Only 50% of generated feature perturbations were used
    trainer.evaluate(attacker.data(feat_ratio=0.5), mask=...)
    
    # NOTE: both arguments can be used simultaneously
    
    enhancement 
    opened by EdisonLeeeee 0
Releases(0.1.0)
  • 0.1.0(Jun 9, 2022)

    GraphWar 0.1.0 πŸŽ‰

    The first major release, built upon PyTorch and PyTorch Geometric (PyG).

    About GraphWar

    GraphWar is a graph adversarial learning toolbox based on PyTorch and PyTorch Geometric (PyG). It implements a wide range of adversarial attacks and defense methods focused on graph data. To facilitate the benchmark evaluation on graphs, we also provide a set of implementations on popular Graph Neural Networks (GNNs).

    Usages

    For more details, please refer to the documentation and examples.

    How fast can we train and evaluate your own GNN?

    Take GCN as an example:

    from graphwar.nn.models import GCN
    from graphwar.training import Trainer
    from torch_geometric.datasets import Planetoid
    dataset = Planetoid(root='.', name='Cora') # Any PyG dataset is available!
    data = dataset[0]
    model = GCN(dataset.num_features, dataset.num_classes)
    trainer = Trainer(model, device='cuda:0')
    trainer.fit({'data': data, 'mask': data.train_mask})
    trainer.evaluate({'data': data, 'mask': data.test_mask})
    

    A simple targeted manipulation attack

    from graphwar.attack.targeted import RandomAttack
    attacker = RandomAttack(data)
    attacker.attack(1, num_budgets=3) # attacking target node `1` with `3` edges 
    attacked_data = attacker.data()
    edge_flips = attacker.edge_flips()
    
    

    A simple untargeted (non-targeted) manipulation attack

    from graphwar.attack.untargeted import RandomAttack
    attacker = RandomAttack(data)
    attacker.attack(num_budgets=0.05) # attacking the graph with 5% edges perturbations
    attacked_data = attacker.data()
    edge_flips = attacker.edge_flips()
    

    We will continue to develop this project and introduce more state-of-the-art implementations of papers in the field of graph adversarial attacks and defenses.

    Source code(tar.gz)
    Source code(zip)
    graphwar-0.1.0-py3-none-any.whl(155.84 KB)
Owner
Jintang Li
Ph.D. student @ Sun Yat-sen University (SYSU), China.
Jintang Li
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)β€œ.

Artifact β€’ Reproduce Bugs β€’ Quick Start β€’ Installation β€’ Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022