Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Overview

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Project | PDF | Poster
Fangyu Li, N. Dinesh Reddy, Xudong Chen and Srinivasa G. Narasimhan
Proceedings of IEEE Intelligent Vehicles Symposium (IV'21)
Best Paper Award

Following instructions below, the user will get keypoints, trajectory reconstruction and vehicular activity clustering results like

Set up

The set up process can be skipped if using docker. Please check "Docker" section.

Python

Python version 3.6.9 is used. Python packages are in requirements.txt .

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git
sudo apt-get install python3.6
sudo apt-get install python3-pip
cd Traffic4D-Release
pip3 install -r requirements.txt

C++

Traffic4D uses C++ libraries ceres and pybind for efficient optimization. pybind needs clang compiler, so Traffic4D uses clang compiler.

Install clang compiler

sudo apt-get install clang++-6.0

Install prerequisites for ceres

# CMake
sudo apt-get install cmake
# google-glog + gflags
sudo apt-get install libgoogle-glog-dev libgflags-dev
# BLAS & LAPACK
sudo apt-get install libatlas-base-dev
# Eigen3
sudo apt-get install libeigen3-dev
# SuiteSparse and CXSparse (optional)
sudo apt-get install libsuitesparse-dev

Download and install ceres

wget https://github.com/ceres-solver/ceres-solver/archive/1.12.0.zip
unzip 1.12.0.zip
cd ceres-solver-1.12.0/
mkdir build
cd build
cmake ..
make
sudo make install

Download and install pybind

git clone https://github.com/pybind/pybind11
cd pybind11
cmake .
make
sudo make install

Build Traffic4D optimization library

cd Traffic4D-Release/src/ceres
make

ceres_reconstruct.so and ceres_spline.so are generated under path Traffic4D-Release/src/ceres/.

Dataset

Download dataset and pre-generated results from here, and put it under Traffic4D-Release/.

cd Traffic4D-Release
mv Data-Traffic4D.zip ./
unzip Data-Traffic4D.zip

The directory should be like

Traffic4D-Release/
    Data-Traffic4D/
    └───fifth_morewood/
        └───fifth_morewood_init.vd
        └───top_view.png
        └───images/
                00001.jpg
                00002.jpg
                ...
                06288.jpg
    └───arterial_kennedy/
        └───arterial_kennedy_init.vd
        └───top_view.png
        └───images/
                <put AI City Challenge frames here>
        ...

The input and output paths can be modified in config/*.yml.

Explanation

1. Input videos

Sample videos in Traffic4D are provided. Note arterial_kennedy and dodge_century are from Nvidia AI City Challenge City-Scale Multi-Camera Vehicle Tracking Challenge Track. Please request the access to the dataset here. Once get the data, run

ffmpeg -i <mtmc-dir>/train/S01/c001/vdo.avi Traffic4D-Release/Data-Traffic4D/arterial_kennedy/images/%05d.jpg
ffmpeg -i <mtmc-dir>/test/S02/c007/vdo.avi Traffic4D-Release/Data-Traffic4D/dodge_century/images/%05d.jpg

to extract frames into images/.

2. Pre-Generated 2D results

Detected 2D bounding boxes, keypoints and tracking IDs are stored in *_init.vd. Check Occlusionnet implementation for detecting keypoints; V-IOU for multi-object tracking.

3. Output folder

Folder Traffic4D-Release/Result/ will be created by default.

Experiments

Run python exp/traffic4d.py config/<intersection_name>.yml <action>. Here YML configuration files for multiple intersections are provided under config/ folder. <action> shoulbe be reconstruction or clustering to perform longitudinal reconstruction and activity clustering sequentially. For example, below runs Fifth and Morewood intersection.

cd Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Results

Find these results in the output folder:

  1. 2D keypoints: If 3D reconstruction is done, 2D reprojected keypoints will be plotted in Traffic4D-Release/Result/<intersection_name>_keypoints/.
  2. 3D reconstructed trajectories and clusters: The clustered 3D trajectories are plotted on the top view map as Traffic4D-Release/Result/<intersection_name>_top_view.jpg.

Docker

We provide docker image with dependencies already set up. The steps in "Set up" can be skipped if you use docker image. You still need to clone the repo and download the dataset and put it in under Traffic4D-Release/.

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git

Pull Traffic4D docker image.

docker pull emrysli/traffic4d-release:latest

Then create a container and map the git repo into docker container to access the dataset. For example, if the cloned repo locates at host directory /home/xxx/Traffic4D-Release, <path_to_repo> should be /home/xxx. If <path_in_container> is /home/yyy, then /home/xxx/Traffic4D-Release will be mapped as /home/yyy/Traffic4D-Release inside the container.

docker run -it -v <path_to_repo>/Traffic4D-Release:<path_in_container>/Traffic4D-Release emrysli/traffic4d-release:latest /bin/bash

Inside container compile Traffic4D again.

# inside container
cd <path_in_container>/Traffic4D-Release/src/ceres
make

Run experiments.

cd <path_in_container>/Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Trouble Shooting

  1. tkinter module is missing
File "/usr/local/lib/python3.6/dist-packages/matplotlib/backends/_backend_tk.py", line 5, in <module>
    import tkinter as Tk
ModuleNotFoundError: No module named 'tkinter'

Solution: install tkinter.

sudo apt-get install python3-tk
  1. opencv import error such as
File "/usr/local/lib/python3.6/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libSM.so.6: cannot open shared object file: No such file or directory

Solution: install the missing libraries.

sudo apt-get install libsm6 libxrender1 libfontconfig1 libxext6

Citation

Traffic4D

@conference{Li-2021-127410,
author = {Fangyu Li and N. Dinesh Reddy and Xudong Chen and Srinivasa G. Narasimhan},
title = {Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision},
booktitle = {Proceedings of IEEE Intelligent Vehicles Symposium (IV '21)},
year = {2021},
month = {July},
publisher = {IEEE},
keywords = {Self-Supervision, vehicle Detection, 4D Reconstruction, 3D reconstuction, Pose Estimation.},
}

Occlusion-Net

@inproceedings{onet_cvpr19,
author = {Reddy, N. Dinesh and Vo, Minh and Narasimhan, Srinivasa G.},
title = {Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {7326--7335},
year = {2019}
}
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022