pytorch, hand(object) detect ,yolo v5,手检测

Related tags

Deep Learningyolo-v5
Overview

YOLO V5

物体检测,包括手部检测。

项目介绍

手部检测

手部检测示例如下 :

  • 视频示例:
    video

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

手部检测数据集

该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进行制作。
TV-Hand 和 COCO-Hand数据集官网地址 http://vision.cs.stonybrook.edu/~supreeth/

感谢数据集贡献者。    
Paper:  
Contextual Attention for Hand Detection in the Wild. S. Narasimhaswamy, Z. Wei, Y. Wang, J. Zhang, and M. Hoai, IEEE International Conference on Computer Vision, ICCV 2019.   

所有数据集的数据格式

size是全图分辨率, (x,y) 是目标物体中心对于全图的归一化坐标,w,h是目标物体边界框对于全图的归一化宽、高。

dw = 1./(size[0])  
dh = 1./(size[1])  
x = (box[0] + box[1])/2.0 - 1  
y = (box[2] + box[3])/2.0 - 1  
w = box[1] - box[0]  
h = box[3] - box[2]  
x = x*dw  
w = w*dw  
y = y*dh  
h = h*dh  

为了更好了解标注数据格式,可以通过运行 show_yolo_anno.py 脚本进行制作数据集的格式。注意配置脚本里的path和path_voc_names,path为标注数据集的相关文件路径,path_voc_names为数据集配置文件。

制作自己的训练数据集

  • 如下所示,每一行代表一个物体实例,第一列是标签,后面是归一化的中心坐标(x,y),和归一化的宽(w)和高(h),且每一列信息空格间隔。归一化公式如上,同时可以通过show_yolo_anno.py进行参数适配后,可视化验证其正确性。
label     x                  y                   w                  h
0 0.6200393316313977 0.5939000244140625 0.17241466452130497 0.14608001708984375
0 0.38552491996544863 0.5855700073242187 0.14937006832733554 0.1258599853515625
0 0.32889763138738515 0.701989990234375 0.031338589085055775 0.0671400146484375
0 0.760577424617577 0.69422998046875 0.028556443261975064 0.0548599853515625
0 0.5107086662232406 0.6921500244140625 0.018792660530470802 0.04682000732421875
0 0.9295538153861138 0.67602001953125 0.03884511231750328 0.01844000244140625

预训练模型

从零开始预训练模型

手部检测预训练模型

项目使用方法

数据集可视化

  • 根目录下运行命令: show_yolo_anno.py (注意脚本内相关参数配置 )

模型训练

  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python video.py (注意脚本内相关参数配置 )
Owner
Eric.Lee
Eric.Lee
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022