PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

Overview

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

This repo presents PyTorch implementation of Multi-targe Graph Domain Adaptation framework from "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" CVPR 2021. The framework is pivoted around two key concepts: graph feature aggregation and curriculum learning (see pipeline below or project web-page).

Results

Environment

Python >= 3.6
PyTorch >= 1.8.1

To install dependencies run (line 1 for pip or line 2 for conda env):

pip install -r requirements.txt
conda install --file requirements.txt

Disclaimer. This code has been tested with cuda toolkit 10.2. Please install PyTorch as supported by your machine.

Datasets

Four datasets are supported:

To run this code, one must check if the txt file names in data/<dataset_name> are matching with the downloaded domain folders. For e.g., to run OfficeHome, the domain sub-folders should be art/, clipart/, product/ and real/ corresponding to art.txt, clipart.txt, product.txt and real.txt that can be found in the data/office-home/.

Methods

  • CDAN
  • CDAN+E

Commands

Office-31

python src/main.py \
        --method 'CDAN' \
        --encoder 'ResNet50' \
 	--dataset 'office31' \
 	--data_root [your office31 folder] \
 	--source 'dslr' \
 	--target 'webcam' 'amazon' \
 	--source_iters 200 \
 	--adapt_iters 3000 \
 	--finetune_iters 15000 \
 	--lambda_node 0.3 \
 	--output_dir 'office31-dcgct/dslr_rest/CDAN'

Office-Home

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'office-home' \
	--data_root [your OfficeHome folder] \
	--source 'art' \
	--target 'clipart' 'product' 'real' \
	--source_iters 500 \
	--adapt_iters 10000 \
	--finetune_iters 15000 \
	--lambda_node 0.3 \
	--output_dir 'officeHome-dcgct/art_rest/CDAN' 

PACS

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'pacs' \
	--data_root [your PACS folder] \
	--source 'photo' \
	--target 'cartoon' 'art_painting' 'sketch' \
	--source_iters 200 \
	--adapt_iters 3000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'pacs-dcgct/photo_rest/CDAN'  

DomainNet

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet101' \
	--dataset 'domain-net' \
	--data_root [your DomainNet folder] \
	--source 'sketch' \
	--target 'clipart' 'infograph' 'painting' 'real' 'quickdraw' \
	--source_iters 5000 \
	--adapt_iters 50000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'domainNet-dcgct/sketch_rest/CDAN'

Citation

If you find our paper and code useful for your research, please consider citing our paper.

@inproceedings{roy2021curriculum,
  title={Curriculum Graph Co-Teaching for Multi-target Domain Adaptation},
  author={Roy, Subhankar and Krivosheev, Evgeny and Zhong, Zhun and Sebe, Nicu and Ricci, Elisa},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Evgeny
Evgeny
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022