QilingLab challenge writeup

Overview

qiling lab writeup

shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。

前情提要

Qiling 是一款功能強大的模擬框架,和 qemu user mode 類似,但可以做到更多功能,詳情請見他們的 github網站

他們有官方文件,解此題目前建議看一下。

我所解的為 aarch64 的 challenge,使用的 rootfs 為 qililng 所提供的 arm64_linux

逆向工具用 ghidra,因為我沒錢買 idapro。

First

先隨手寫個 python 用 qiling 執行 challenge binary。

import sys
from qiling import *
from qiling.const import QL_VERBOSE

sys.path.append("..")


if __name__ == "__main__":
    ql = Qiling(["qilinglab-aarch64"], "rootfs/arm64_linux",verbose=QL_VERBOSE.OFF)
    ql.run()

可以看到結果是 binary 會不正常執行,此為正常現象,有些 Challenge 沒解完會導致錯誤或是無窮迴圈。

Welcome to QilingLab.
Here is the list of challenges:
Challenge 1: Store 1337 at pointer 0x1337.
Challenge 2: Make the 'uname' syscall return the correct values.
Challenge 3: Make '/dev/urandom' and 'getrandom' "collide".
Challenge 4: Enter inside the "forbidden" loop.
Challenge 5: Guess every call to rand().
Challenge 6: Avoid the infinite loop.
Challenge 7: Don't waste time waiting for 'sleep'.
Challenge 8: Unpack the struct and write at the target address.
Challenge 9: Fix some string operation to make the iMpOsSiBlE come true.
Challenge 10: Fake the 'cmdline' line file to return the right content.
Challenge 11: Bypass CPUID/MIDR_EL1 checks.

Checking which challenge are solved...
Note: Some challenges will results in segfaults and infinite loops if they aren't solved.
[x]	

[x]	x0	:	 0x0
[x]	x1	:	 0x0
[x]	x2	:	 0x1
[x]	x3	:	 0x0
[x]	x4	:	 0x0

Challenge 1

把 0x1337 的位置的值改成 1337

用 qiling 把該位置的 memory 讀出來,在進行改寫,要注意 align 問題。詳情請見文件

    ql.mem.map(0x1337//4096*4096, 4096)
    ql.mem.write(0x1337,ql.pack16(1337) )

Challenge 2

改掉 uname 此 system call 的 return。

可以看到他去比對 uname.sysname 和 uname.version 是否為特定值。我採用對 system call 進行 hijack

去翻 linux 文件 可以看到 uname 回傳的格式為 :

struct utsname {
               char sysname[];    /* Operating system name (e.g., "Linux") */
               char nodename[];   /* Name within "some implementation-defined
                                     network" */
               char release[];    /* Operating system release
                                     (e.g., "2.6.28") */
               char version[];    /* Operating system version */
               char machine[];    /* Hardware identifier */
           #ifdef _GNU_SOURCE
               char domainname[]; /* NIS or YP domain name */
           #endif
};

依照此文件把相對應的位置改掉。注意如果 release 改太小或是沒給,會噴錯。

def my_syscall_uname(ql, write_buf, *args, **kw):
    buf = b'QilingOS\x00' # sysname
    ql.mem.write(write_buf, buf)
    buf = b'30000'.ljust(65, b'\x00') # important!! If not sat will `FATAL: kernel too old`
    ql.mem.write(write_buf+65*2, buf)
    buf = b'ChallengeStart'.ljust(65, b'\x00') # version
    ql.mem.write(write_buf+65*3, buf)
    regreturn = 0
    return regreturn

ql.set_syscall("uname", my_syscall_uname)

Challenge 3

/dev/random,從中讀取兩次,確保第一次的值和 getrandom 得到的值相同,且其中沒有第二次讀到值。

查了一下 getrandom 是一 system call。因此對 /dev/random 和 getrandom() 進行 hijack 即可

class Fake_urandom(QlFsMappedObject):
    def read(self, size):
        if(size > 1):
            return b"\x01" * size
        else:
            return b"\x02"
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

def my_syscall_getrandom(ql, write_buf, write_buf_size, flag , *args, **kw):
    buf = b"\x01" * write_buf_size
    ql.mem.write(write_buf, buf)
    regreturn = 0
    return regreturn
    
ql.add_fs_mapper('/dev/urandom', Fake_urandom())
ql.set_syscall("getrandom", my_syscall_getrandom)

Challenge 4

進入不能進去的迴圈

直接 hook cmp 的位置讓 reg w0 是 1 即可,位置記得要加上 pie。

    # 00100fd8 e0 1b 40 b9     ldr        w0,[sp, #local_8]
    # 00100fdc e1 1f 40 b9     ldr        w1,[sp, #local_4]
    # 00100fe0 3f 00 00 6b     cmp        w1,w0    <- hook         
def hook_cmp(ql):
    ql.reg.w0 = 1
    return

base_addr = ql.mem.get_lib_base(ql.path) # get pie_base addr
ql.hook_address(hook_cmp, base_addr + 0xfe0)

Challenge 5

rand() 出來的值和 0 比較要通過

直接 hijack rand() 讓他回傳都是 0 即可。

def hook_cmp(ql):
    ql.reg.w0 = 1
    return
    
ql.set_api("rand", hook_rand)

Challenge 6

解開無窮迴圈

和 Challenge 4 同想法,hook cmp。

def hook_cmp2(ql):
    ql.reg.w0 = 0
    return
    
ql.hook_address(hook_cmp2, base_addr + 0x001118)

Challenge 7

不要讓他 sleep。 解法很多,可以 hook sleep 這個 api,或是看 sleep linux 文件能知道內部處理是用 nanosleep,hook 他即可。

def hook_sleeptime(ql):
    ql.reg.w0 = 0
    return
ql.hook_address(hook_sleeptime, base_addr + 0x1154)

Challenge 8

裡面最難的一題,他是建立特殊一個結構長這個樣子。

struct something(0x18){ 
 string_ptr -> malloc (0x1e) ->  0x64206d6f646e6152
 long_int = 0x3DFCD6EA00000539
 check_addr -> check;
}  

由於他結構內部有 0x3DFCD6EA00000539 這個 magic byte,因此可以直接對此作搜尋並改寫內部記憶體。這邊要注意搜尋可能找到其他位置,因此前面可以加對 string_ptr 所在位置的判斷。

def find_and_patch(ql, *args, **kw):
    MAGIC = 0x3DFCD6EA00000539
    magic_addrs = ql.mem.search(ql.pack64(MAGIC)) 

    # check_all_magic
    for magic_addr in magic_addrs:
        # Dump and unpack the candidate structure
        malloc1_addr = magic_addr - 8
        malloc1_data = ql.mem.read(malloc1_addr, 24)
        # unpack three unsigned long
        string_addr, _ , check_addr = struct.unpack('QQQ', malloc1_data)

        # check string data        
        if ql.mem.string(string_addr) == "Random data":
            ql.mem.write(check_addr, b"\x01")
            break
    return
    
ql.hook_address(find_and_patch, base_addr + 0x011dc)

另一種解法則是由於該結構在 stack 上,因此直接讀 stack 即可。

Challenge 9

把一字串轉用tolower小寫,再用 strcmp 比較。

解法一樣很多種,我是 hijack tolower() 讓他啥事都不做。

def hook_tolower(ql):
    return
    
ql.set_api("tolower", hook_tolower)

Challenge 10

打開不存在的文件,讀取的值需要是 qilinglab

和 Challenge 3 作法一樣,這邊要注意的是 return 要是 byte,string 會出錯。 = =

class Fake_cmdline(QlFsMappedObject):

    def read(self, size):
        return b"qilinglab" # type should byte byte, string will error = =
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

ql.add_fs_mapper('/proc/self/cmdline', Fake_cmdline())

Challenge 11

可以看到他從 MIDR_EL1 取值,而此為特殊的暫存器。

這邊解法是去 hook code,我選擇 hook 這段

# 001013ec 00 00 38 d5     mrs        x0,midr_el1

去搜尋所有記憶體為 b"\x00\x00\x38\xD5" ,讓他執行時把 x0 暫存器改寫,並更改 pc。

def midr_el1_hook(ql, address, size):  
    if ql.mem.read(address, size) == b"\x00\x00\x38\xD5":
        # if any code is mrs        x0,midr_el1
        # Write the expected value to x0
        ql.reg.x0 = 0x1337 << 0x10
        # Go to next instruction
        ql.reg.arch_pc += 4
    # important !! Maybe hook library
    # see : https://joansivion.github.io/qilinglabs/
    return

ql.hook_code(midr_el1_hook)

Done

Thanks

Thanks MANSOUR Cyril release his writeup, help me alot.

Owner
Yuan
Yuan
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022