MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

Overview

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted for International Joint Conference on Neural Networks (IJCNN) 2021 ArXiv

Jacek Komorowski, Monika Wysoczańska, Tomasz Trzciński

Warsaw University of Technology

Our other projects

  • MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • Large-Scale Topological Radar Localization Using Learned Descriptors (ICONIP 2021): RadarLoc
  • EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale (IEEE Robotics and Automation Letters April 2022): EgoNN

Introduction

We present a discriminative multimodal descriptor based on a pair of sensor readings: a point cloud from a LiDAR and an image from an RGB camera. Our descriptor, named MinkLoc++, can be used for place recognition, re-localization and loop closure purposes in robotics or autonomous vehicles applications. We use late fusion approach, where each modality is processed separately and fused in the final part of the processing pipeline. The proposed method achieves state-of-the-art performance on standard place recognition benchmarks. We also identify dominating modality problem when training a multimodal descriptor. The problem manifests itself when the network focuses on a modality with a larger overfit to the training data. This drives the loss down during the training but leads to suboptimal performance on the evaluation set. In this work we describe how to detect and mitigate such risk when using a deep metric learning approach to train a multimodal neural network.

Overview

Citation

If you find this work useful, please consider citing:

@INPROCEEDINGS{9533373,  
   author={Komorowski, Jacek and Wysoczańska, Monika and Trzcinski, Tomasz},  
   booktitle={2021 International Joint Conference on Neural Networks (IJCNN)},   
   title={MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition},   
   year={2021},  
   doi={10.1109/IJCNN52387.2021.9533373}
}

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 1.0 or above)
  • tensorboard
  • colour_demosaicing

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../MinkLocMultimodal

Datasets

MinkLoc++ is a multimodal descriptor based on a pair of inputs:

  • a 3D point cloud constructed by aggregating multiple 2D LiDAR scans from Oxford RobotCar dataset,
  • a corresponding RGB image from the stereo-center camera.

We use 3D point clouds built by authors of PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition paper (link). Each point cloud is built by aggregating 2D LiDAR scans gathered during the 20 meter vehicle traversal. For details see PointNetVLAD paper or their github repository (link). You can download training and evaluation point clouds from here (alternative link).

After downloading the dataset, you need to edit config_baseline_multimodal.txt configuration file (in config folder). Set dataset_folder parameter to point to a root folder of PointNetVLAD dataset with 3D point clouds. image_path parameter must be a folder where downsampled RGB images from Oxford RobotCar dataset will be saved. The folder will be created by generate_rgb_for_lidar.py script.

Generate training and evaluation tuples

Run the below code to generate training pickles (with positive and negative point clouds for each anchor point cloud) and evaluation pickles. Training pickle format is optimized and different from the format used in PointNetVLAD code.

cd generating_queries/ 

# Generate training tuples for the Baseline Dataset
python generate_training_tuples_baseline.py --dataset_root 
   
    

# Generate training tuples for the Refined Dataset
python generate_training_tuples_refine.py --dataset_root 
    
     

# Generate evaluation tuples
python generate_test_sets.py --dataset_root 
     

     
    
   

is a path to dataset root folder, e.g. /data/pointnetvlad/benchmark_datasets/. Before running the code, ensure you have read/write rights to , as training and evaluation pickles are saved there.

Downsample RGB images and index RGB images linked with each point cloud

RGB images are taken directly from Oxford RobotCar dataset. First, you need to download stereo camera images from Oxford RobotCar dataset. See dataset website for details (link). After downloading Oxford RobotCar dataset, run generate_rgb_for_lidar.py script. The script finds 20 closest RGB images in RobotCar dataset for each 3D point cloud, downsamples them and saves them in the target directory (image_path parameter in config_baseline_multimodal.txt). During the training an input to the network consists of a 3D point cloud and one RGB image randomly chosen from these 20 corresponding images. During the evaluation, a network input consists of a 3D point cloud and one RGB image with the closest timestamp.

cd scripts/ 

# Generate training tuples for the Baseline Dataset
python generate_rgb_for_lidar.py --config ../config/config_baseline_multimodal.txt --oxford_root 
   

   

Training

MinkLoc++ can be used in unimodal scenario (3D point cloud input only) and multimodal scenario (3D point cloud + RGB image input). To train MinkLoc++ network, download and decompress the 3D point cloud dataset and generate training pickles as described above. To train the multimodal model (3D+RGB) download the original Oxford RobotCar dataset and extract RGB images corresponding to 3D point clouds as described above. Edit the configuration files:

  • config_baseline_multimodal.txt when training a multimodal (3D+RGB) model
  • config_baseline.txt and config_refined.txt when train unimodal (3D only) model

Set dataset_folder parameter to the dataset root folder, where 3D point clouds are located. Set image_path parameter to the path with RGB images corresponding to 3D point clouds, extracted from Oxford RobotCar dataset using generate_rgb_for_lidar.py script (only when training a multimodal model). Modify batch_size_limit parameter depending on the available GPU memory. Default limits requires 11GB of GPU RAM.

To train the multimodal model (3D+RGB), run:

cd training

python train.py --config ../config/config_baseline_multimodal.txt --model_config ../models/minklocmultimodal.txt

To train a unimodal model (3D only) model run:

cd training

# Train unimodal (3D only) model on the Baseline Dataset
python train.py --config ../config/config_baseline.txt --model_config ../models/minkloc3d.txt

# Train unimodal (3D only) model on the Refined Dataset
python train.py --config ../config/config_refined.txt --model_config ../models/minkloc3d.txt

Pre-trained Models

Pretrained models are available in weights directory

  • minkloc_multimodal.pth multimodal model (3D+RGB) trained on the Baseline Dataset with corresponding RGB images
  • minkloc3d_baseline.pth unimodal model (3D only) trained on the Baseline Dataset
  • minkloc3d_refined.pth unimodal model (3D only) trained on the Refined Dataset

Evaluation

To evaluate pretrained models run the following commands:

cd eval

# To evaluate the multimodal model (3D+RGB only) trained on the Baseline Dataset
python evaluate.py --config ../config/config_baseline_multimodal.txt --model_config ../models/minklocmultimodal.txt --weights ../weights/minklocmultimodal_baseline.pth

# To evaluate the unimodal model (3D only) trained on the Baseline Dataset
python evaluate.py --config ../config/config_baseline.txt --model_config ../models/minkloc3d.txt --weights ../weights/minkloc3d_baseline.pth

# To evaluate the unimodal model (3D only) trained on the Refined Dataset
python evaluate.py --config ../config/config_refined.txt --model_config ../models/minkloc3d.txt --weights ../weights/minkloc3d_refined.pth

Results

MinkLoc++ performance (measured by Average [email protected]%) compared to the state of the art:

Multimodal model (3D+RGB) trained on the Baseline Dataset extended with RGB images

Method Oxford ([email protected]) Oxford ([email protected]%)
CORAL [1] 88.9 96.1
PIC-Net [2] 98.2
MinkLoc++ (3D+RGB) 96.7 99.1

Unimodal model (3D only) trained on the Baseline Dataset

Method Oxford ([email protected]%) U.S. ([email protected]%) R.A. ([email protected]%) B.D ([email protected]%)
PointNetVLAD [3] 80.3 72.6 60.3 65.3
PCAN [4] 83.8 79.1 71.2 66.8
DAGC [5] 87.5 83.5 75.7 71.2
LPD-Net [6] 94.9 96.0 90.5 89.1
EPC-Net [7] 94.7 96.5 88.6 84.9
SOE-Net [8] 96.4 93.2 91.5 88.5
NDT-Transformer [10] 97.7
MinkLoc3D [9] 97.9 95.0 91.2 88.5
MinkLoc++ (3D-only) 98.2 94.5 92.1 88.4

Unimodal model (3D only) trained on the Refined Dataset

Method Oxford ([email protected]%) U.S. ([email protected]%) R.A. ([email protected]%) B.D ([email protected]%)
PointNetVLAD [3] 80.1 94.5 93.1 86.5
PCAN [4] 86.4 94.1 92.3 87.0
DAGC [5] 87.8 94.3 93.4 88.5
LPD-Net [6] 94.9 98.9 96.4 94.4
SOE-Net [8] 96.4 97.7 95.9 92.6
MinkLoc3D [9] 98.5 99.7 99.3 96.7
MinkLoc++ (RGB-only) 98.4 99.7 99.3 97.4
  1. Y. Pan et al., "CORAL: Colored structural representation for bi-modal place recognition", preprint arXiv:2011.10934 (2020)
  2. Y. Lu et al., "PIC-Net: Point Cloud and Image Collaboration Network for Large-Scale Place Recognition", preprint arXiv:2008.00658 (2020)
  3. M. A. Uy and G. H. Lee, "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  4. W. Zhang and C. Xiao, "PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval", 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  5. Q. Sun et al., "DAGC: Employing Dual Attention and Graph Convolution for Point Cloud based Place Recognition", Proceedings of the 2020 International Conference on Multimedia Retrieval
  6. Z. Liu et al., "LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis", 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
  7. L. Hui et al., "Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition" preprint arXiv:2101.02374 (2021)
  8. Y. Xia et al., "SOE-Net: A Self-Attention and Orientation Encoding Network for Point Cloud based Place Recognition", 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  9. J. Komorowski, "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2021)
  10. Z. Zhou et al., "NDT-Transformer: Large-scale 3D Point Cloud Localisation Using the Normal Distribution Transform Representation", 2021 IEEE International Conference on Robotics and Automation (ICRA)
  • J. Komorowski, M. Wysoczanska, T. Trzcinski, "MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition", accepted for International Joint Conference on Neural Networks (IJCNN), (2021)

License

Our code is released under the MIT License (see LICENSE file for details).

Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022