TyXe: Pyro-based BNNs for Pytorch users

Related tags

Deep LearningTyXe
Overview

TyXe: Pyro-based BNNs for Pytorch users

TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveraging the model definition and inference capabilities of Pyro. Our core design principle is to cleanly separate the construction of neural architecture, prior, inference distribution and likelihood, enabling a flexible workflow where each component can be exchanged independently. Defining a BNN in TyXe takes as little as 5 lines of code:

net = nn.Sequential(nn.Linear(1, 50), nn.Tanh(), nn.Linear(50, 1))
prior = tyxe.priors.IIDPrior(dist.Normal(0, 1))
likelihood = tyxe.likelihoods.HomoskedasticGaussian(scale=0.1)
inference = tyxe.guides.AutoNormal
bnn = tyxe.VariationalBNN(net, prior, likelihood, inference)

In the following, we assume that you (roughly) know what a BNN is mathematically.

Motivating example

Standard neural networks give us a single function that fits the data, but many different ones are typically plausible. With only a single fit, we don't know for what inputs the model is 'certain' (because there is training data nearby) and where it is uncertain.

ML Samples
Maximum likelihood fit Posterior samples

Implementing the former can be achieved easily in a few lines of Pytorch code, but training a BNN that gives a distribution over different fits is typically more complicated and is specifically what we aim to simplify.

Training

Constructing a BNN object has been shown in the example above. For fitting the posterior approximation, we provide a high-level .fit method similar to libraries such as scikit-learn or keras:

optim = pyro.optim.Adam({"lr": 1e-3})
bnn.fit(data_loader, optim, num_epochs)

Prediction & evaluation

Further we provide .predict and .evaluation methods, which make predictions based on multiple samples from the approximate posterior, average them based on the observation model, and return log likelihoods and an error measure:

predictions = bnn.predict(x_test, num_samples)
error, log_likelihood = bnn.evaluate(x_test, y_test, num_samples)

Local reparameterization

We implement local reparameterization for factorized Gaussians as a poutine, which reduces gradient noise during training. This means it can be enabled or disabled at both during training and prediction with a context manager:

with tyxe.poutine.local_reparameterization():
    bnn.fit(data_loader, optim, num_epochs)
    bnn.predict(x_test, num_predictions)

At the moment, this poutine does not work with the AutoNormal and AutoDiagonalNormal guides in pyro, since those draw the weights from a Delta distribution, so you need to use tyxe.guides.ParameterwiseDiagonalNormal as your guide.

MCMC

We provide a unified interface to pyro's MCMC implementations, simply use the tyxe.MCMC_BNN class instead and provide a kernel instead of the guide:

kernel = pyro.infer.mcmcm.NUTS
bnn = tyxe.MCMC_BNN(net, prior, likelihood, kernel)

Any parameters that pyro's MCMC class accepts can be passed through the keyword arguments of the .fit method.

Continual learning

Due to our design that cleanly separates the prior from guide, architecture and likelihood, it is easy to update it in a continual setting. For example, you can construct a tyxe.priors.DictPrior by extracting the distributions over all weights and biases from a ParameterwiseDiagonalNormal instance using the get_detached_distributions method and pass it to bnn.update_prior to implement Variational Continual Learning in a few lines of code. See examples/vcl.py for a basic example on split-MNIST and split-CIFAR.

Network architectures

We don't implement any layer classes. You construct your network in Pytorch and then turn it into a BNN, which makes it easy to apply the same prior and inference strategies to different neural networks.

Inference

For inference, we mainly provide an equivalent to pyro's AutoDiagonalNormal that is compatible with local reparameterization in tyxe.guides. This module also contains a few helper functions for initialization of Gaussian mean parameters, e.g. to the values of a pre-trained network. It should be possible to use any of pyro's autoguides for variational inference. See examples/resnet.py for a few options as well as initializing to pre-trained weights.

Priors

The priors can be found in tyxe.priors. We currently only support placing priors on the parameters. Through the expose and hide arguments in the init method you can specify layers, types of layers and specific parameters over which you want to place a prior. This helps, for example in learning the parameters of BatchNorm layers deterministically.

Likelihoods

tyxe.observation_models contains classes that wrap the most common torch.distributions for specifying noise models of data to

Installation

We recommend installing TyXe using conda with the provided environment.yml, which also installs all the dependencies for the examples except for Pytorch3d, which needs to be added manually. The environment assumes that you are using CUDA11.0, if this is not the case, simply change the cudatoolkit and dgl-cuda versions before running:

conda env create -f environment.yml
conda activate tyxe
pip install -e .

Citation

If you use TyXe, please consider citing:

@article{ritter2021tyxe,
  author    = {Hippolyt Ritter and
               Theofanis Karaletsos
               },
  title     = {TyXe: Pyro-based Bayesian neural nets for Pytorch},
  journal   = {International Conference on Probabilistic Programming (ProbProg)},
  volume    = {},
  pages     = {},
  year      = {2020},
  url       = {https://arxiv.org/abs/2110.00276}
}
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022