✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

Overview

风纪委员会自动投票

本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧!

如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请

投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,时间是UTC时区的时间,需要将时位+8才是北京时间

使用本脚本即代表你放弃追究开发者任何由使用本脚本而造成的责任,所有的责任由使用者自行承担!

赞助

点击下面的Badge其中一个就可以跳转到相应页面,感谢老板的支持!

前往爱发电赞助 使用微信赞助 使用支付宝赞助

目录

从零开始的使用指北☞

使用方法

1、Fork本仓库,直接点击右上角的Fork图标,然后将项目选择到你的账户下即可

2、进入设置,添加变量必需变量csrfsessdata,另有giveupdelay可选变量可以添加

请注意:你无需在仓库的secrets内设置名为GITHUB_TOKEN的变量,该名称本身就是指定为自己账户下名为GITHUB_TOKEN的密钥,如果你在仓库的secrets内设置将会被Github提示无效

如何获取变量内容?请点这里

保活策略

因为Github Action在仓库60天内没有任何Push的时候会禁用你的Action,这时候我们就要进行保活

保活Action已经写好了,但是这里有一些步骤是需要你进行的,请看下面的图片生成GITHUB_TOKEN以便让脚本造成的更改能够正常推送入你的仓库

到这里勾选完以后点绿绿的Generate token就可以了

变量获取

csrf与sessdata

首先我们打开B站,直接在B站的网址后面加上/judgement,或者直接访问https://bilibili.com/judgement,按下键盘上的F12,打开开发者工具

接着我们点到上面的Network(有些写的是网络,例如Edge),在左边找到index项,然后点击它,在右侧找到cookie这一个键,然后复制SESSDATA=;的内容作为sessdatabili_jct=;的内容作为csrf

请注意:不要把分号弄进去了!不要分号!不要分号!(重要的事情说三遍)

giveup与delay

这是两个我设定的值,因为B站对于案件有放弃这一说,所以我对它特别加了个开关

如果你不想让脚本对案件采用放弃的操作,那么就要添加Giveup这个值,而且必须填上False,否则一律当允许放弃处理;还有一个delay是不放弃的话等待多长时间以后再次进行操作计算,以秒为单位,必须是整数,不填就默认为300

JudgeProportion

这是一个设定赞成比例的值,默认设定的是0.7,即赞成票占全部的70%就选择赞成中票数较高的操作,或合规票占全部的70%(即违规占30%)时就投合规,否则进入放弃/等待阶段,这个数字必须是大于0且小于1的小数!若输入无效数字按默认值处理!

脚本测试

我们先进入Action界面,启用Action(因为我这里忘记截图了,所以用我隔壁的那个网易云游戏签到脚本来顶一下)

然后我们进入对应的脚本,启用脚本,并进行测试

只要打了绿色的勾勾就是成功了,然后你就不用管它了,它会自己运行的

脚本更新

自动更新(推荐)

点击这里安装插件,可以选择所有仓库,也可以指选择你Fork的仓库(当然至少要选择fork的仓库对吧,要不然怎么更新),然后不管它就好了

详细步骤可以看下面的图片

手动更新

具体看图,请注意:以下操作均在自己的仓库进行!

这样你就完成了手动更新操作!

免责声明

学习项目,请勿滥用!如果有因滥用造成的封号、删除账户等情况或违反相关法律所造成的责任,本人拒不承担!

Owner
Pesy Wu
C++菜鸟,一般用Python,高中生,2021高考生,上线时间少很多,不一定能及时回复请见谅(>人<;) 小号:@ElainaMoe
Pesy Wu
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023