✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

Overview

风纪委员会自动投票

本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧!

如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请

投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,时间是UTC时区的时间,需要将时位+8才是北京时间

使用本脚本即代表你放弃追究开发者任何由使用本脚本而造成的责任,所有的责任由使用者自行承担!

赞助

点击下面的Badge其中一个就可以跳转到相应页面,感谢老板的支持!

前往爱发电赞助 使用微信赞助 使用支付宝赞助

目录

从零开始的使用指北☞

使用方法

1、Fork本仓库,直接点击右上角的Fork图标,然后将项目选择到你的账户下即可

2、进入设置,添加变量必需变量csrfsessdata,另有giveupdelay可选变量可以添加

请注意:你无需在仓库的secrets内设置名为GITHUB_TOKEN的变量,该名称本身就是指定为自己账户下名为GITHUB_TOKEN的密钥,如果你在仓库的secrets内设置将会被Github提示无效

如何获取变量内容?请点这里

保活策略

因为Github Action在仓库60天内没有任何Push的时候会禁用你的Action,这时候我们就要进行保活

保活Action已经写好了,但是这里有一些步骤是需要你进行的,请看下面的图片生成GITHUB_TOKEN以便让脚本造成的更改能够正常推送入你的仓库

到这里勾选完以后点绿绿的Generate token就可以了

变量获取

csrf与sessdata

首先我们打开B站,直接在B站的网址后面加上/judgement,或者直接访问https://bilibili.com/judgement,按下键盘上的F12,打开开发者工具

接着我们点到上面的Network(有些写的是网络,例如Edge),在左边找到index项,然后点击它,在右侧找到cookie这一个键,然后复制SESSDATA=;的内容作为sessdatabili_jct=;的内容作为csrf

请注意:不要把分号弄进去了!不要分号!不要分号!(重要的事情说三遍)

giveup与delay

这是两个我设定的值,因为B站对于案件有放弃这一说,所以我对它特别加了个开关

如果你不想让脚本对案件采用放弃的操作,那么就要添加Giveup这个值,而且必须填上False,否则一律当允许放弃处理;还有一个delay是不放弃的话等待多长时间以后再次进行操作计算,以秒为单位,必须是整数,不填就默认为300

JudgeProportion

这是一个设定赞成比例的值,默认设定的是0.7,即赞成票占全部的70%就选择赞成中票数较高的操作,或合规票占全部的70%(即违规占30%)时就投合规,否则进入放弃/等待阶段,这个数字必须是大于0且小于1的小数!若输入无效数字按默认值处理!

脚本测试

我们先进入Action界面,启用Action(因为我这里忘记截图了,所以用我隔壁的那个网易云游戏签到脚本来顶一下)

然后我们进入对应的脚本,启用脚本,并进行测试

只要打了绿色的勾勾就是成功了,然后你就不用管它了,它会自己运行的

脚本更新

自动更新(推荐)

点击这里安装插件,可以选择所有仓库,也可以指选择你Fork的仓库(当然至少要选择fork的仓库对吧,要不然怎么更新),然后不管它就好了

详细步骤可以看下面的图片

手动更新

具体看图,请注意:以下操作均在自己的仓库进行!

这样你就完成了手动更新操作!

免责声明

学习项目,请勿滥用!如果有因滥用造成的封号、删除账户等情况或违反相关法律所造成的责任,本人拒不承担!

Owner
Pesy Wu
C++菜鸟,一般用Python,高中生,2021高考生,上线时间少很多,不一定能及时回复请见谅(>人<;) 小号:@ElainaMoe
Pesy Wu
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022