Towards End-to-end Video-based Eye Tracking

Related tags

Deep LearningEVE
Overview

Towards End-to-end Video-based Eye Tracking

The code accompanying our ECCV 2020 publication and dataset, EVE.

Setup

Preferably, setup a Docker image or virtual environment (virtualenvwrapper is recommended) for this repository. Please note that we have tested this code-base in the following environments:

  • Ubuntu 18.04 / A Linux-based cluster system (CentOS 7.8)
  • Python 3.6 / Python 3.7
  • PyTorch 1.5.1

Clone this repository somewhere with:

git clone [email protected]:swook/EVE
cd EVE/

Then from the base directory of this repository, install all dependencies with:

pip install -r requirements.txt

Please note the PyTorch official installation guide for setting up the torch and torchvision packages on your specific system.

You will also need to setup ffmpeg for video decoding. On Linux, we recommend installing distribution-specific packages (usually named ffmpeg). If necessary, check out the official download page or compilation instructions.

Usage

Information on the code framework

Configuration file system

All available configuration parameters are defined in src/core/config_default.py.

In order to override the default values, one can do:

  1. Pass the parameter via a command-line parameter to train.py or inference.py. Note that in this case, replace all _ characters with -. E.g. the config. parameter refine_net_enabled becomes --refine-net-enabled 1. Note that boolean parameters can be passed in via either 0/no/false or 1/yes/true.
  2. Create a JSON file such as src/configs/eye_net.json or src/configs/refine_net.json.

The order of application are:

  1. Default parameters
  2. JSON-provided parameters, in order of JSON file declaration. For instance, in the command python train.py config1.json config2.json, config2.json overrides config1.json entries should there be any overlap.
  3. CLI-provided parameters.

Automatic logging to Google Sheets

This framework implements an automatic logging code of all parameters, loss terms, and metrics to a Google Sheets document. This is done by the gspread library. To enable this possibility, follow these instructions:

  1. Follow the instructions at https://gspread.readthedocs.io/en/latest/oauth2.html#for-end-users-using-oauth-client-id
  2. Set --gsheet-secrets-json-file to a path to the credentials JSON file, and set --gsheet-workbook-key to the document key. This key is the part after https://docs.google.com/spreadsheets/d/ and before any query or hash parameters.

An example config JSON file can be found at src/configs/sample_gsheet.json.

Training a model

To train a model, simply run python train.py from src/ with the appropriate configuration changes that are desired (see "Configuration file system" above).

Note, that in order to resume the training of an existing model you must provide the path to the output folder via the --resume-from argument.

Also, at every fresh run of train.py, a unique identifier is generated to produce a unique output folder in outputs/EVE/. Hence, it is recommended to use the Google Sheets logging feature (see "Automatic logging to Google Sheets") to keep track of your models.

Running inference

The single-sample inference script at src/inference.py takes in the same arguments as train.py but expects two arguments in particular:

  • --input-path is the path to a basler.mp4 or webcam_l.mp4 or webcam_c.mp4 or webcam_r.mp4 that exists in the EVE dataset.
  • --output-path is a path to a desired output location (ending in .mp4).

This script works for both training, validation, and test samples and shows the reference point-of-gaze ground-truth when available.

Citation

If using this code-base and/or the EVE dataset in your research, please cite the following publication:

@inproceedings{Park2020ECCV,
  author    = {Seonwook Park and Emre Aksan and Xucong Zhang and Otmar Hilliges},
  title     = {Towards End-to-end Video-based Eye-Tracking},
  year      = {2020},
  booktitle = {European Conference on Computer Vision (ECCV)}
}

Q&A

Q: How do I use this code for screen-based eye tracking?

A: This code does not offer actual eye tracking. Rather, it concerns the benchmarking of the video-based gaze estimation methods outlined in the original paper. Extending this code to support an easy-to-use software for screen-based eye tracking is somewhat non-trivial, due to requirements on camera calibration (intrinsics, extrinsics), and an efficient pipeline for accurate and stable real-time eye or face patch extraction. Thus, we consider this to be beyond the scope of this code repository.

Q: Where are the test set labels?

A: Our public evaluation server and leaderboard are hosted by Codalab at https://competitions.codalab.org/competitions/28954. This allows for evaluations on our test set to be consistent and reliable, and encourage competition in the field of video-based gaze estimation. Please note that the performance reported by Codalab is not strictly speaking comparable to the original paper's results, as we only perform evaluation on a large subset of the full test set. We recommend acquiring the updated performance figures from the leaderboard.

Comments
  • use against new dataset

    use against new dataset

    Hi,

    Can this code be used at inference time against in-the-wild mp4 that do not necessarily provide an accompanying H5? The more I work with this codebase, the more it looks obvious that w/o the mp4 being TOBII generated, this will not work. Is this true?

    thank you

    opened by inisar 0
  • File name parser

    File name parser

    File name parser can be made more robust to your own dataset files.
    Currently doesn't work for both webcam_l.mp4 and webcam_l_eyes.mp4 Please see below for filename and correction I made to make it work. src/core/inference.py try: camera_type = components[-1][:-4] except AssertionError: camera_type = camera_type[:-5]

    opened by inisar 0
  • How to synchronize the data from camera and eye tracker?

    How to synchronize the data from camera and eye tracker?

    Hi, @swook . I use OpenCV to capture the frames, what borthers me is that I don't know how to attach a timestamp to each frame and ensure the interval of each timestamp nearly the same. By using the datetime.time(), I can get the current time and regard it as the timestamp, but the interval between each of the timestamps seems to be different and has a big gap. So could you share me some details about your method which is used to synchronize the data?Or It would be very nice if you can share the source code or your method with me. Thanks.

    opened by Kihensarn 0
  • How to get the 3D gaze origin

    How to get the 3D gaze origin

    Hi, @swook Thanks for your great job, but I have a question about how to get the 3D gaze origin(determined during data pre-processing). The paper said "In pre-processing the EVEdataset, we apply a 3DMM fitting approach with interocular-distance-based scale-normalization to alleviate these issues" . However, I'm not sure about the specific process of this step. What should I do if I want to convert from landmark to 3D gaze origin? Besides, if it is possible to open some code of this part? Thanks a lot!

    opened by TeresaKumo 0
  • About the result

    About the result

    I trained the eve model with eve data, ran eval_codalab.py and got pkl file as a result. I also ran eval_codalabl.py and got pkl file from the pretrained model weights(from https://github.com/swook/EVE/releases/tag/v0.0 - eve_refinenet_CGRU_oa_skip.pt) Then, I compared these two results and the numbers seem to match. For example, from the pretrained model, I got [960. 540.] for PoG_px_final and got [963.0835 650.5635] for my model.

    However, in the eve paper, table3 shows that the PoG_px in GRU model with oa+skip is 95.59 Numbers in paper is 1/10 of the numbers i got from eval_codalab and not sure what went wrong. Are they supposed to match? If they are not supposed to match, how do you calculate the numbers?

    Also, in the result page of codalab, the gaze direction(angular error) is shown, but the eval_codalab.py doesn't store gaze direction. (Keys_to_store=['left pupil size' , 'right pupil', 'pog__px_initial', 'pog_px_final', 'timestamp']) How should I get gaze direction error in degree?

    opened by chaeyoun 1
Owner
Seonwook Park
Seonwook Park
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022