Towards End-to-end Video-based Eye Tracking

Related tags

Deep LearningEVE
Overview

Towards End-to-end Video-based Eye Tracking

The code accompanying our ECCV 2020 publication and dataset, EVE.

Setup

Preferably, setup a Docker image or virtual environment (virtualenvwrapper is recommended) for this repository. Please note that we have tested this code-base in the following environments:

  • Ubuntu 18.04 / A Linux-based cluster system (CentOS 7.8)
  • Python 3.6 / Python 3.7
  • PyTorch 1.5.1

Clone this repository somewhere with:

git clone [email protected]:swook/EVE
cd EVE/

Then from the base directory of this repository, install all dependencies with:

pip install -r requirements.txt

Please note the PyTorch official installation guide for setting up the torch and torchvision packages on your specific system.

You will also need to setup ffmpeg for video decoding. On Linux, we recommend installing distribution-specific packages (usually named ffmpeg). If necessary, check out the official download page or compilation instructions.

Usage

Information on the code framework

Configuration file system

All available configuration parameters are defined in src/core/config_default.py.

In order to override the default values, one can do:

  1. Pass the parameter via a command-line parameter to train.py or inference.py. Note that in this case, replace all _ characters with -. E.g. the config. parameter refine_net_enabled becomes --refine-net-enabled 1. Note that boolean parameters can be passed in via either 0/no/false or 1/yes/true.
  2. Create a JSON file such as src/configs/eye_net.json or src/configs/refine_net.json.

The order of application are:

  1. Default parameters
  2. JSON-provided parameters, in order of JSON file declaration. For instance, in the command python train.py config1.json config2.json, config2.json overrides config1.json entries should there be any overlap.
  3. CLI-provided parameters.

Automatic logging to Google Sheets

This framework implements an automatic logging code of all parameters, loss terms, and metrics to a Google Sheets document. This is done by the gspread library. To enable this possibility, follow these instructions:

  1. Follow the instructions at https://gspread.readthedocs.io/en/latest/oauth2.html#for-end-users-using-oauth-client-id
  2. Set --gsheet-secrets-json-file to a path to the credentials JSON file, and set --gsheet-workbook-key to the document key. This key is the part after https://docs.google.com/spreadsheets/d/ and before any query or hash parameters.

An example config JSON file can be found at src/configs/sample_gsheet.json.

Training a model

To train a model, simply run python train.py from src/ with the appropriate configuration changes that are desired (see "Configuration file system" above).

Note, that in order to resume the training of an existing model you must provide the path to the output folder via the --resume-from argument.

Also, at every fresh run of train.py, a unique identifier is generated to produce a unique output folder in outputs/EVE/. Hence, it is recommended to use the Google Sheets logging feature (see "Automatic logging to Google Sheets") to keep track of your models.

Running inference

The single-sample inference script at src/inference.py takes in the same arguments as train.py but expects two arguments in particular:

  • --input-path is the path to a basler.mp4 or webcam_l.mp4 or webcam_c.mp4 or webcam_r.mp4 that exists in the EVE dataset.
  • --output-path is a path to a desired output location (ending in .mp4).

This script works for both training, validation, and test samples and shows the reference point-of-gaze ground-truth when available.

Citation

If using this code-base and/or the EVE dataset in your research, please cite the following publication:

@inproceedings{Park2020ECCV,
  author    = {Seonwook Park and Emre Aksan and Xucong Zhang and Otmar Hilliges},
  title     = {Towards End-to-end Video-based Eye-Tracking},
  year      = {2020},
  booktitle = {European Conference on Computer Vision (ECCV)}
}

Q&A

Q: How do I use this code for screen-based eye tracking?

A: This code does not offer actual eye tracking. Rather, it concerns the benchmarking of the video-based gaze estimation methods outlined in the original paper. Extending this code to support an easy-to-use software for screen-based eye tracking is somewhat non-trivial, due to requirements on camera calibration (intrinsics, extrinsics), and an efficient pipeline for accurate and stable real-time eye or face patch extraction. Thus, we consider this to be beyond the scope of this code repository.

Q: Where are the test set labels?

A: Our public evaluation server and leaderboard are hosted by Codalab at https://competitions.codalab.org/competitions/28954. This allows for evaluations on our test set to be consistent and reliable, and encourage competition in the field of video-based gaze estimation. Please note that the performance reported by Codalab is not strictly speaking comparable to the original paper's results, as we only perform evaluation on a large subset of the full test set. We recommend acquiring the updated performance figures from the leaderboard.

Comments
  • use against new dataset

    use against new dataset

    Hi,

    Can this code be used at inference time against in-the-wild mp4 that do not necessarily provide an accompanying H5? The more I work with this codebase, the more it looks obvious that w/o the mp4 being TOBII generated, this will not work. Is this true?

    thank you

    opened by inisar 0
  • File name parser

    File name parser

    File name parser can be made more robust to your own dataset files.
    Currently doesn't work for both webcam_l.mp4 and webcam_l_eyes.mp4 Please see below for filename and correction I made to make it work. src/core/inference.py try: camera_type = components[-1][:-4] except AssertionError: camera_type = camera_type[:-5]

    opened by inisar 0
  • How to synchronize the data from camera and eye tracker?

    How to synchronize the data from camera and eye tracker?

    Hi, @swook . I use OpenCV to capture the frames, what borthers me is that I don't know how to attach a timestamp to each frame and ensure the interval of each timestamp nearly the same. By using the datetime.time(), I can get the current time and regard it as the timestamp, but the interval between each of the timestamps seems to be different and has a big gap. So could you share me some details about your method which is used to synchronize the data?Or It would be very nice if you can share the source code or your method with me. Thanks.

    opened by Kihensarn 0
  • How to get the 3D gaze origin

    How to get the 3D gaze origin

    Hi, @swook Thanks for your great job, but I have a question about how to get the 3D gaze origin(determined during data pre-processing). The paper said "In pre-processing the EVEdataset, we apply a 3DMM fitting approach with interocular-distance-based scale-normalization to alleviate these issues" . However, I'm not sure about the specific process of this step. What should I do if I want to convert from landmark to 3D gaze origin? Besides, if it is possible to open some code of this part? Thanks a lot!

    opened by TeresaKumo 0
  • About the result

    About the result

    I trained the eve model with eve data, ran eval_codalab.py and got pkl file as a result. I also ran eval_codalabl.py and got pkl file from the pretrained model weights(from https://github.com/swook/EVE/releases/tag/v0.0 - eve_refinenet_CGRU_oa_skip.pt) Then, I compared these two results and the numbers seem to match. For example, from the pretrained model, I got [960. 540.] for PoG_px_final and got [963.0835 650.5635] for my model.

    However, in the eve paper, table3 shows that the PoG_px in GRU model with oa+skip is 95.59 Numbers in paper is 1/10 of the numbers i got from eval_codalab and not sure what went wrong. Are they supposed to match? If they are not supposed to match, how do you calculate the numbers?

    Also, in the result page of codalab, the gaze direction(angular error) is shown, but the eval_codalab.py doesn't store gaze direction. (Keys_to_store=['left pupil size' , 'right pupil', 'pog__px_initial', 'pog_px_final', 'timestamp']) How should I get gaze direction error in degree?

    opened by chaeyoun 1
Owner
Seonwook Park
Seonwook Park
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022