Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Overview

Nonuniform-to-Uniform Quantization

This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation"

In this study, we propose a quantization method that can learn the non-uniform input thresholds to maintain the strong representation ability of nonuniform methods, while output uniform quantized levels to be hardware-friendly and efficient as the uniform quantization for model inference.

To train the quantized network with learnable input thresholds, we introduce a generalized straight-through estimator (G-STE) for intractable backward derivative calculation w.r.t. threshold parameters.

The formula for N2UQ is simply as follows,

Forward pass:

Backward pass:

Moreover, we proposed L1 norm based entropy preserving weight regularization for weight quantization.

Citation

If you find our code useful for your research, please consider citing:

@inproceedings{liu2022nonuniform,
  title={Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation},
  author={Liu, Zechun and Cheng, Kwang-Ting and Huang, Dong and Xing, Eric and Shen, Zhiqiang},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Run

1. Requirements:

  • python 3.6, pytorch 1.7.1, torchvision 0.8.2
  • gdown

2. Data:

  • Download ImageNet dataset

3. Pretrained Models:

  • pip install gdown # gdown will automatically download the models
  • If gdown doesn't work, you may need to manually download the pretrained models and put them in the correponding ./models/ folder.

4. Steps to run:

(1) For ResNet architectures:

  • Change directory to ./resnet/
  • Run bash run.sh architecture n_bits quantize_downsampling
  • E.g., bash run.sh resnet18 2 0 for quantize resnet18 to 2-bit without quantizing downsampling layers

(2) For MobileNet architectures:

  • Change directory to ./mobilenetv2/
  • Run bash run.sh

Models

1. ResNet

Network Methods W2/A2 W3/A3 W4/A4
ResNet-18
PACT 64.4 68.1 69.2
DoReFa-Net 64.7 67.5 68.1
LSQ 67.6 70.2 71.1
N2UQ 69.4 Model-Res18-2bit 71.9 Model-Res18-3bit 72.9 Model-Res18-4bit
N2UQ * 69.7 Model-Res18-2bit 72.1 Model-Res18-3bit 73.1 Model-Res18-4bit
ResNet-34
LSQ 71.6 73.4 74.1
N2UQ 73.3 Model-Res34-2bit 75.2 Model-Res34-3bit 76.0 Model-Res34-4bit
N2UQ * 73.4 Model-Res34-2bit 75.3 Model-Res34-3bit 76.1 Model-Res34-4bit
ResNet-50
PACT 64.4 68.1 69.2
LSQ 67.6 70.2 71.1
N2UQ 75.8 Model-Res50-2bit 77.5 Model-Res50-3bit 78.0 Model-Res50-4bit
N2UQ * 76.4 Model-Res50-2bit 77.6 Model-Res50-3bit 78.0 Model-Res50-4bit

Note that N2UQ without * denotes quantizing all the convolutional layers except the first input convolutional layer.

N2UQ with * denotes quantizing all the convolutional layers except the first input convolutional layer and three downsampling layers.

W2/A2, W3/A3, W4/A4 denote the cases where the weights and activations are both quantized to 2 bits, 3 bits, and 4 bits, respectively.

2. MobileNet

Network Methods W4/A4
MobileNet-V2 N2UQ 72.1 Model-MBV2-4bit

Contact

Zechun Liu, HKUST (zliubq at connect.ust.hk)

Owner
Zechun Liu
Ph.D student in HKUST and visiting scholar in CMU
Zechun Liu
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022