基于Paddle框架的fcanet复现

Overview

fcanet-Paddle

基于Paddle框架的fcanet复现

fcanet

本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

参考项目:

frazerlin-fcanet

数据准备

本项目已挂载论文所使用的数据集,对于tgztar文件需要利用以下命令解压

tar -xvf benchmark.tgz
tar xvf VOCtrainval_11-May-2012.tar

整个工程具有以下目录结构

/home/aistudio
|───Data(数据集)
└───────benchmark_RELEASE
└───────VOCdevkit
└───────GrabCut
└───────Berkeley
└───fcanet(代码文件)
└───InitialPaddleModel(初始化权重)

训练

The official PyTorch implementation of CVPR 2020 paper "Interactive Image Segmentation with First Click Attention". 并未提供训练代码。通过邮件联系作者,作者由于企业合作项目原因,合作结束后会将会提供训练代码

测试

模型下载

提取码:2ira

AIStudio链接

验证集测试

python fcanet/evaluate.py --backbone [resnet/res2net] --dataset [GrabCut,Berkeley,DAVIS(not exists in this repo),VOCdevkit] (--sis)

如下图所示,默认的backbone均为101

resnet101测试示例

res2net101测试示例

backbone dataset mNoC mIoU-NoC
resnet101 Berkeley 4.23 [0. 0.728 0.854 0.885 0.912 0.915 0.926 0.935 0.939 0.935 0.94 0.943 0.942 0.944 0.945 0.945 0.947 0.947 0.948 0.947 0.949]
resnet101 GrabCut 2.24 [0. 0.78 0.87 0.923 0.944 0.95 0.956 0.966 0.964 0.971 0.971 0.971 0.975 0.977 0.978 0.979 0.978 0.978 0.979 0.979 0.979]
resnet101 VOC2012 2.9810329734461627 [0. 0.715 0.838 0.885 0.909 0.926 0.937 0.945 0.951 0.957 0.962 0.964 0.967 0.969 0.971 0.973 0.974 0.976 0.977 0.978 0.979]
res2net101 Berkeley 3.98 [0. 0.788 0.872 0.901 0.921 0.93 0.933 0.938 0.938 0.943 0.943 0.943 0.943 0.945 0.947 0.948 0.949 0.949 0.95 0.951 0.95 ]
res2net101 GrabCut 2.16 [0. 0.819 0.877 0.927 0.916 0.931 0.948 0.96 0.966 0.967 0.969 0.971 0.973 0.976 0.977 0.976 0.978 0.977 0.98 0.977 0.979]
res2net101 VOC2012 2.793988911584476 [0. 0.757 0.841 0.882 0.908 0.925 0.937 0.945 0.952 0.958 0.963 0.966 0.968 0.971 0.973 0.974 0.976 0.977 0.978 0.98 0.98 ]

可视化测试

利用annotator.py可以实现可视化操作,感兴趣的读者可是利用Qt实现UI程序,实现效果如下所示

需要注意的是,AIStudio环境暂不支持这种可视化方式,你需要将此仓库部署到本地运行,你可能需要修改代码文件中的路径

python fcanet/annotator.py --backbone res2net --input fcanet/test.jpg --output test_mask.jpg

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022