This is an official implementation of the High-Resolution Transformer for Dense Prediction.

Overview

High-Resolution Transformer for Dense Prediction

Introduction

This is the official implementation of High-Resolution Transformer (HRT). We present a High-Resolution Transformer (HRT) that learns high-resolution representations for dense prediction tasks, in contrast to the original Vision Transformer that produces low-resolution representations and has high memory and computational cost. We take advantage of the multi-resolution parallel design introduced in high-resolution convolutional networks (HRNet), along with local-window self-attention that performs self-attention over small non-overlapping image windows, for improving the memory and computation efficiency. In addition, we introduce a convolution into the FFN to exchange information across the disconnected image windows. We demonstrate the effectiveness of the High-Resolution Transformeron human pose estimation and semantic segmentation tasks.

  • The High-Resolution Transformer architecture:

teaser

Pose estimation

2d Human Pose Estimation

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 256x192 74.0% 90.2% 81.2% 70.4% 80.7% 79.4% ckpt log script
HRT-S 384x288 75.6% 90.3% 82.2% 71.6% 82.5% 80.7% ckpt log script
HRT-B 256x192 75.6% 90.8% 82.8% 71.7% 82.6% 80.8% ckpt log script
HRT-B 384x288 77.2% 91.0% 83.6% 73.2% 84.2% 82.0% ckpt log script

Results on COCO test-dev with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 384x288 74.5% 92.3% 82.1% 70.7% 80.6% 79.8% ckpt log script
HRT-B 384x288 76.2% 92.7% 83.8% 72.5% 82.3% 81.2% ckpt log script

The models are first pre-trained on ImageNet-1K dataset, and then fine-tuned on COCO val2017 dataset.

Semantic segmentation

Cityscapes

Performance on the Cityscapes dataset. The models are trained and tested with input size of 512x1024 and 1024x2048 respectively.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 80000 8 Yes 80.0 81.0 log ckpt script
OCRNet HRT-B 7x7 Train Val 80000 8 Yes 81.4 82.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 80000 8 Yes 81.9 82.6 log ckpt script

PASCAL-Context

The models are trained with the input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 53.8 54.6 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 56.3 57.1 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 57.6 58.5 log ckpt script

COCO-Stuff

The models are trained with input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 37.9 38.9 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 41.6 42.5 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 42.4 43.3 log ckpt script

ADE20K

The models are trained with input size of 520x520, and tested with original size. The results with window size 15x15 will be updated latter.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 150000 8 Yes 44.0 45.1 log ckpt script
OCRNet HRT-B 7x7 Train Val 150000 8 Yes 46.3 47.6 log ckpt script
OCRNet HRT-B 13x13 Train Val 150000 8 Yes 48.7 50.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 150000 8 Yes - - - - -

Classification

Results on ImageNet-1K

Backbone [email protected] [email protected] #params FLOPs ckpt log script
HRT-T 78.6% 94.2% 8.0M 1.83G ckpt log script
HRT-S 81.2% 95.6% 13.5M 3.56G ckpt log script
HRT-B 82.8% 96.3% 50.3M 13.71G ckpt log script

Citation

If you find this project useful in your research, please consider cite:

@article{YuanFHZCW21,
  title={HRT: High-Resolution Transformer for Dense Prediction},
  author={Yuhui Yuan and Rao Fu and Lang Huang and Chao Zhang and Xilin Chen and Jingdong Wang},
  booktitle={arXiv},
  year={2021}
}

Acknowledgment

This project is developed based on the Swin-Transformer, openseg.pytorch, and mmpose.

git diff-index HEAD
git subtree add -P pose <url to sub-repo> <sub-repo branch>
Comments
  • Question about Local Self-Attention of your code

    Question about Local Self-Attention of your code

    Hi,I‘m very interested in your work about the Local Self-Attention and feature fusion in Transformer。But I have a doubt that Because the input image size for the image classification task in the source code is fixed, 224 or 384, in other words, the size is an integer multiple of 32. If the input size is not fixed, for example the detection task, the input is 800x1333, although the feature map can be divided into window size windows by using padding, but for the key_ padding_ mask, how should the mask be handled?

    The shape of attention weights map is [bs x H/7 x W/7, 49, 49], default there window size is 7, but the key padding mask shape is [1, HW], so how can I convert this mask to match the attention weights map。

    I sincerely hope you can give me some advice about this question. Thanks !

    opened by Huzhen757 4
  • about pose training speed

    about pose training speed

    the computation cost of HRF-s 256 isd about 2.8G flops. but when i training it, i found that it is significantly slower than the hrnet which have about 7.9 Gflops do you know how to solve it? thanks

    opened by maowayne123 4
  • Is the padding module wrong?

    Is the padding module wrong?

    Hello, I observes in the class PadBlock, the operation you have done is "n (qh ph) (qw pw) c -> (ph pw) (n qh qw) c" which you makes the padding group as batch dim. Therefore, it may cause a problem that you consider the pad-group wise attention across all batches. Do you think the permutation should be "n (qh ph) (qw pw) c -> (n ph pw) (qh qw) c"

    opened by UBCIntelliview 3
  • Need pre-trained model on ImageNet-1K

    Need pre-trained model on ImageNet-1K

    Hi, thanks for your work! I'm trying to train your model in custom config from scratch, but have not found any pre-trained model on ImageNet-1K. Do you plan to share these models?

    opened by WinstonDeng 2
  • undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    ` FutureWarning, WARNING:torch.distributed.run:


    Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


    Traceback (most recent call last): File "tools/train.py", line 168, in main() File "tools/train.py", line 122, in main env_info_dict = collect_env() File "/dataset/wh/wh_code/HRFormer-main/pose/mmpose/utils/collect_env.py", line 8, in collect_env env_info = collect_basic_env() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/env.py", line 85, in collect_env from mmcv.ops import get_compiler_version, get_compiling_cuda_version File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/init.py", line 1, in from .bbox import bbox_overlaps File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/bbox.py", line 3, in ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps']) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/ext_loader.py", line 12, in load_ext ext = importlib.import_module('mmcv.' + name) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) ImportError: /home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _Z13__THCudaCheck9cudaErrorPKci ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 42674) of binary: /home/celia/anaconda3/envs/open-mmlab/bin/python Traceback (most recent call last): File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 193, in main() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 189, in main launch(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 174, in launch run(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/run.py", line 718, in run )(*cmd_args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 131, in call return launch_agent(self._config, self._entrypoint, list(args)) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 247, in launch_agent failures=result.failures, torch.distributed.elastic.multiprocessing.errors.ChildFailedError:

    tools/train.py FAILED

    Failures: [1]: time : 2022-10-24_10:03:43 host : omnisky rank : 1 (local_rank: 1) exitcode : 1 (pid: 42675) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2022-10-24_10:03:43 host : omnisky rank : 2 (local_rank: 2) exitcode : 1 (pid: 42676) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2022-10-24_10:03:43 host : omnisky rank : 3 (local_rank: 3) exitcode : 1 (pid: 42677) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html

    Root Cause (first observed failure): [0]: time : 2022-10-24_10:03:43 host : omnisky rank : 0 (local_rank: 0) exitcode : 1 (pid: 42674) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================`

    opened by yzew 1
  • Pretrained model for cityscapes

    Pretrained model for cityscapes

    Thanks for your great job. I have some trouble for reproducing the segmentation results of cityscapes. Then I check the log and find out it might be the problem of pretrained models. For now I use the ImageNet model released as pretrained. Can you release the pretrained model for cityscapes? Thanks a lot!

    opened by devillala 1
  • Cuda out of memory on resume (incl. fix)

    Cuda out of memory on resume (incl. fix)

    If ran out of memory with exact same params as in training (which worked). Loading the model first to cpu fixes the problem:

    resume_dict = torch.load(self.configer.get('network', 'resume'),map_location='cpu')

    maybe it helps somebody

    021-08-25 14:51:29,793 INFO [data_helper.py, 126] Input keys: ['img'] 2021-08-25 14:51:29,793 INFO [data_helper.py, 127] Target keys: ['labelmap'] Traceback (most recent call last): File "/home/rsa-key-20190908/HRFormer/seg/main.py", line 541, in model.train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 438, in train self.__train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 187, in __train outputs = self.seg_net(*inputs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 705, in forward output = self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/nets/hrt.py", line 117, in forward x = self.backbone(x) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 579, in forward y_list = self.stage3(x_list) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 282, in forward x[i] = self.branchesi File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/transformer_block.py", line 103, in forward x = x + self.drop_path(self.attn(self.norm1(x), H, W)) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_pool_attention.py", line 41, in forward out, _, _ = self.attn(x_permute, x_permute, x_permute, rpe=self.with_rpe, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 116, in forward rpe=rpe, File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 311, in multi_head_attention_forward ) + relative_position_bias.unsqueeze(0) RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 15.78 GiB total capacity; 6.64 GiB already allocated; 27.25 MiB free; 6.66 GiB reserved in total by PyTorch) Killing subprocess 6170

    opened by marcok 1
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • Cannot reproduce the test accuracy.

    Cannot reproduce the test accuracy.

    I tried to run the test of HRFormer on ImageNet-1k, but the test result was strange. The top-1 accuracy is about 2.0%

    Test command

    bash run_eval.sh hrt/hrt_tiny ~/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth  ~/data/imagenet
    

    Test output

    [2022-09-06 15:00:15 hrt_tiny](main.py 157): INFO number of params: 8035820
    All checkpoints founded in output/hrt_tiny/default: []
    [2022-09-06 15:00:15 hrt_tiny](main.py 184): INFO no checkpoint found in output/hrt_tiny/default, ignoring auto resume
    [2022-09-06 15:00:15 hrt_tiny](utils.py 21): INFO ==============> Resuming form /home/mzr/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth....................
    [2022-09-06 15:00:15 hrt_tiny](utils.py 31): INFO <All keys matched successfully>
    [2022-09-06 15:00:19 hrt_tiny](main.py 389): INFO Test: [0/391]	Time 4.122 (4.122)	Loss 8.9438 (8.9438)	[email protected] 2.344 (2.344)	[email protected] 4.688 (4.688)	Mem 2309MB
    [2022-09-06 15:00:29 hrt_tiny](main.py 389): INFO Test: [10/391]	Time 1.028 (1.279)	Loss 9.0749 (9.3455)	[email protected] 5.469 (2.486)	[email protected] 12.500 (7.031)	Mem 2309MB
    [2022-09-06 15:00:39 hrt_tiny](main.py 389): INFO Test: [20/391]	Time 1.027 (1.159)	Loss 9.9610 (9.3413)	[email protected] 0.781 (2.269)	[email protected] 4.688 (7.403)	Mem 2309MB
    [2022-09-06 15:00:49 hrt_tiny](main.py 389): INFO Test: [30/391]	Time 0.952 (1.103)	Loss 9.1598 (9.3309)	[email protected] 1.562 (2.293)	[email protected] 7.812 (7.359)	Mem 2309MB
    [2022-09-06 15:00:59 hrt_tiny](main.py 389): INFO Test: [40/391]	Time 0.951 (1.071)	Loss 9.3239 (9.3605)	[email protected] 0.781 (2.210)	[email protected] 4.688 (7.241)	Mem 2309MB
    [2022-09-06 15:01:09 hrt_tiny](main.py 389): INFO Test: [50/391]	Time 0.952 (1.049)	Loss 9.7051 (9.3650)	[email protected] 0.781 (2.191)	[email protected] 3.125 (7.200)	Mem 2309MB
    [2022-09-06 15:01:18 hrt_tiny](main.py 389): INFO Test: [60/391]	Time 0.951 (1.035)	Loss 9.5935 (9.3584)	[email protected] 1.562 (2.075)	[email protected] 7.812 (7.095)	Mem 2309MB
    ...
    

    The environment is brand new according to the install instruction, and the checkpoint is from https://github.com/HRNet/HRFormer/releases/tag/v1.0.0 . The only change is I disabled the amp.

    opened by mzr1996 0
  • cocostuff dataset validation bug

    cocostuff dataset validation bug

    in the segmentation folder -> segmentation_val/segmentor/tester.py line183

    def __relabel(self, label_map):
        height, width = label_map.shape
        label_dst = np.zeros((height, width), dtype=np.uint8)
        for i in range(self.configer.get('data', 'num_classes')):
            label_dst[label_map == i] = self.configer.get('data', 'label_list')[i]
      
        label_dst = np.array(label_dst, dtype=np.uint8)
      
        return label_dst
    
    if self.configer.exists('data', 'reduce_zero_label') and self.configer.get('data', 'reduce_zero_label'):
        label_img = label_img + 1
        label_img = label_img.astype(np.uint8)
    if self.configer.exists('data', 'label_list'):
        label_img_ = self.__relabel(label_img)
    else:
        label_img_ = label_img
    

    for cocostuff dataset (171 num classes), the origin predicted classes range from 0-170, after +1, it range from 1-171, then feed the label_img into __relabel() func. However, the loop in __relabel() range from 0-170, and the class 171 is not be operated.

    opened by chencheng1203 0
  • missing `mmpose/version.py`

    missing `mmpose/version.py`

    Hi,

    When I installed mmpose in this repo, I found there is no mmpose/version.py file.

        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 105, in <module>
            version=get_version(),
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 14, in get_version
            with open(version_file, 'r') as f:
        FileNotFoundError: [Errno 2] No such file or directory: 'mmpose/version.py'
    
    
    opened by ShoufaChen 2
  • Inference speed

    Inference speed

    What is the inference speed for e.g. semantic segmentation using 1024x1024 (referring to table 5)? Measured on GPU of your choice, just to get a feeling?

    opened by UrskaJ 0
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022