PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Overview

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models

This repository will reproduce the main results from our paper:

On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp*, Mitch Hill*, Tian Han, Song-Chun Zhu, and Ying Nian Wu (*equal contributions)
https://arxiv.org/abs/1903.12370
AAAI 2020.

The files train_data.py and train_toy.py are PyTorch-based implementations of Algorithm 1 for image datasets and toy 2D distributions respectively. Both files will measure and plot the diagnostic values $d_{s_t}$ and $r_t$ described in Section 3 during training. The file eval.py will sample from a saved checkpoint using either unadjusted Langevin dynamics or Metropolis-Hastings adjusted Langevin dynamics. We provide an appendix ebm-anatomy-appendix.pdf that contains further practical considerations and empirical observations.

Config Files

The folder config_locker has several JSON files that reproduce different convergent and non-convergent learning outcomes for image datasets and toy distributions. Config files for evaluation of pre-trained networks are also included. The files data_config.json, toy_config.json, and eval_config.json fully explain the parameters for train_data.py, train_toy.py, and eval.py respectively.

Executable Files

To run an experiment with train_data.py, train_toy.py, or eval.py, just specify a name for the experiment folder and the location of the JSON config file:

# directory for experiment results
EXP_DIR = './name_of/new_folder/'
# json file with experiment config
CONFIG_FILE = './path_to/config.json'

before execution.

Other Files

Network structures are located in nets.py. A download function for Oxford Flowers 102 data, plotting functions, and a toy dataset class can be found in utils.py.

Diagnostics

Energy Difference and Langevin Gradient Magnitude: Both image and toy experiments will plot $d_{s_t}$ and $r_t$ (see Section 3) over training along with correlation plots as in Figure 4 (with ACF rather than PACF).

Landscape Plots: Toy experiments will plot the density and log-density (negative energy) for ground-truth, learned energy, and short-run models. Kernel density estimation is used to obtain the short-run density.

Short-Run MCMC Samples: Image data experiments will periodically visualize the short-run MCMC samples. A batch of persistent MCMC samples will also be saved for implementations that use persistent initialization for short-run sampling.

Long-Run MCMC Samples: Image data experiments have the option to obtain long-run MCMC samples during training. When log_longrun is set to true in a data config file, the training implementation will generate long-run MCMC samples at a frequency determined by log_longrun_freq. The appearance of long-run MCMC samples indicates whether the energy function assigns probability mass in realistic regions of the image space.

Pre-trained Networks

A convergent pre-trained network and non-convergent pre-trained network for the Oxford Flowers 102 dataset are available in the Releases section of the repository. The config files eval_flowers_convergent.json and eval_flowers_convergent_mh.json are set up to evaluate flowers_convergent_net.pth. The config file eval_flowers_nonconvergent.json is set up to evaluate flowers_nonconvergent_net.pth.

Contact

Please contact Mitch Hill ([email protected]) or Erik Nijkamp ([email protected]) for any questions.

You might also like...
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

PyTorch implementation of the implicit Q-learning algorithm (IQL)
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

A pytorch reprelication of the model-based reinforcement learning algorithm MBPO
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • Step size in Langevin Dynamics

    Step size in Langevin Dynamics

    Hi, in your code, when you do the langevin dynamics, you run x_s_t.data += - f_prime + config['epsilon'] * t.randn_like(x_s_t) However, does this mean that the step size for the gradient f_prim is 1? Should we run x_s_t.data += - 0.5*config['epsilon']**2*f_prime + config['epsilon'] * t.randn_like(x_s_t) instead?

    opened by XavierXiao 1
Releases(v1.0)
Owner
Mitch Hill
Assistant Professor of Statistics and Data Science at UCF
Mitch Hill
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
A Python package for faster, safer, and simpler ML processes

Bender πŸ€– A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❀️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Аналитика доходности инвСстиционного портфСля Π² Π’ΠΈΠ½ΡŒΠΊΠΎΡ„Ρ„ Π±Ρ€ΠΎΠΊΠ΅Ρ€Π΅

Аналитика доходности инвСстиционного портфСля Виньков Π’ΠΈΠ΄Π΅ΠΎ Π½Π° YouTube Для Ρ€Π°Π±ΠΎΡ‚Ρ‹ скрипта Π½ΡƒΠΆΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ‚Ρ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… окруТСния: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea MΓΌller 45 Jan 07, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022