[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Overview

Unlearnable Examples

Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang.

Quick Start

Use the QuickStart.ipynb notebook for a quick start.

In the notebook, you can find the minimal implementation for generating sample-wise unlearnable examples on CIFAR-10. Please remove mlconfig from models/__init__.py if you are only using the notebook and copy-paste the model to the notebook.

Experiments in the paper.

Check scripts folder for *.sh for each corresponding experiments.

Sample-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             50000 3 32 32                  \
                        --epsilon                 8                              \
                        --num_steps               20                             \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            samplewise                      \
                        --universal_stop_error    0.01
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            samplewise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Class-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             10 3 32 32                     \
                        --epsilon                 8                              \
                        --num_steps               1                              \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            classwise                      \
                        --universal_train_target  'train_subset'                 \
                        --universal_stop_error    0.1                            \
                        --use_subset
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            classwise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Cite Our Work

@inproceedings{huang2021unlearnable,
    title={Unlearnable Examples: Making Personal Data Unexploitable},
    author={Hanxun Huang and Xingjun Ma and Sarah Monazam Erfani and James Bailey and Yisen Wang},
    booktitle={ICLR},
    year={2021}
}
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023