[IJCAI'21] Deep Automatic Natural Image Matting

Overview

Deep Automatic Natural Image Matting [IJCAI-21]

This is the official repository of the paper Deep Automatic Natural Image Matting.

Introduction | Network | AIM-500 | Results | Statement


📆 News

The training code, inference code and the pretrained models will be released soon.

[2021-07-16]: Publish the validation dataset AIM-500. Please follow the readme.txt for details.

Introduction

Different from previous methods only focusing on images with salient opaque foregrounds such as humans and animals, in this paper, we investigate the difficulties when extending the automatic matting methods to natural images with salient transparent/meticulous foregrounds or non-salient foregrounds.

To address the problem, we propose a novel end-to-end matting network, which can predict a generalized trimap for any image of the above types as a unified semantic representation. Simultaneously, the learned semantic features guide the matting network to focus on the transition areas via an attention mechanism.

We also construct a test set AIM-500 that contains 500 diverse natural images covering all types along with manually labeled alpha mattes, making it feasible to benchmark the generalization ability of AIM models. Results of the experiments demonstrate that our network trained on available composite matting datasets outperforms existing methods both objectively and subjectively.

Network

We propose the methods consist of:

  • Improved Backbone for Matting: an advanced max-pooling version of ResNet-34, serves as the backbone for the matting network, pretrained on ImageNet;

  • Unified Semantic Representation: a type-wise semantic representation to replace the traditional trimaps;

  • Guided Matting Process: an attention based mechanism to guide the matting process by leveraging the learned semantic features from the semantic decoder to focus on extracting details only within transition area.

The backbone pretrained on ImageNet and the model pretrained on synthetic matting dataset will be released soon.

Pretrained-backbone Pretrained-model
coming soon coming soon

AIM-500

We propose AIM-500 (Automatic Image Matting-500), the first natural image matting test set, which contains 500 high-resolution real-world natural images from all three types (SO, STM, NS), many categories, and the manually labeled alpha mattes. Some examples and the amount of each category are shown below. The AIM-500 dataset is published now, can be downloaded directly from this link. Please follow the readme.txt for more details.

Portrait Animal Transparent Plant Furniture Toy Fruit
100 200 34 75 45 36 10

Results

We test our network on different types of images in AIM-500 and compare with previous SOTA methods, the results are shown below.

Statement

If you are interested in our work, please consider citing the following:

@inproceedings{ijcai2021-danim,
  title     = {Deep Automatic Natural Image Matting},
  author    = {Li, Jizhizi and Zhang, Jing and Tao, Dacheng},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  year      = {2021},
}

This project is under the MIT license. For further questions, please contact [email protected].

Relevant Projects

End-to-end Animal Image Matting
Jizhizi Li, Jing Zhang, Stephen J. Maybank, Dacheng Tao

Owner
Jizhizi_Li
Ph.D. student at the University of Sydney - Artificial Intelligence
Jizhizi_Li
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021