👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

Overview

👐 OpenHands: Sign Language Recognition Library

Making Sign Language Recognition Accessible

Check the documentation on how to use the library:
ReadTheDocs: 👐 OpenHands

License

This project is released under the Apache 2.0 license.

Citation

If you find our work useful in your research, please consider citing us:

@misc{2021_openhands_slr_preprint,
      title={OpenHands: Making Sign Language Recognition Accessible with Pose-based Pretrained Models across Languages}, 
      author={Prem Selvaraj and Gokul NC and Pratyush Kumar and Mitesh Khapra},
      year={2021},
      eprint={2110.05877},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Comments
  • Question about GSL dataset

    Question about GSL dataset

    I have no idea how to get the Isolated gloss sign language recognition (GSL isol.) data (xxx_signerx_repx_glosses), while I only find the continuous sign language recognition data (xxx_signerx_repx_sentences) from https://zenodo.org/record/3941811.

    Thank you very much for any information about this.

    opened by snorlaxse 6
  • Question about 'Config-based training'

    Question about 'Config-based training'

    I try the code from Config-based training as below.

    import omegaconf
    from openhands.apis.classification_model import ClassificationModel
    from openhands.core.exp_utils import get_trainer
    import os 
    
    os.environ["CUDA_VISIBLE_DEVICES"]="2,3"
    cfg = omegaconf.OmegaConf.load("examples/configs/lsa64/decoupled_gcn.yaml")
    trainer = get_trainer(cfg)
    
    
    model = ClassificationModel(cfg=cfg, trainer=trainer)
    model.init_from_checkpoint_if_available()
    model.fit()
    
    /raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:747: UserWarning: You requested multiple GPUs but did not specify a backend, e.g. `Trainer(accelerator="dp"|"ddp"|"ddp2")`. Setting `accelerator="ddp_spawn"` for you.
      "You requested multiple GPUs but did not specify a backend, e.g."
    GPU available: True, used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    /raid/xxx/OpenHands/openhands/apis/inference.py:21: LightningDeprecationWarning: The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5. Access the datamodule through using `self.trainer.datamodule` instead.
      self.datamodule.setup(stage=stage)
    Found 64 classes in train splits
    Found 64 classes in test splits
    Train set size: 2560
    Valid set size: 320
    /raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/core/datamodule.py:424: LightningDeprecationWarning: DataModule.setup has already been called, so it will not be called again. In v1.6 this behavior will change to always call DataModule.setup.
      f"DataModule.{name} has already been called, so it will not be called again. "
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [2,3]
    Traceback (most recent call last):
      File "study_train.py", line 15, in <module>
        model.fit()
      File "/raid/xxx/OpenHands/openhands/apis/classification_model.py", line 104, in fit
        self.trainer.fit(self, self.datamodule)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 552, in fit
        self._run(model)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 917, in _run
        self._dispatch()
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 985, in _dispatch
        self.accelerator.start_training(self)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
        self.training_type_plugin.start_training(trainer)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/ddp_spawn.py", line 158, in start_training
        mp.spawn(self.new_process, **self.mp_spawn_kwargs)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 199, in spawn
        return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 148, in start_processes
        process.start()
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/process.py", line 112, in start
        self._popen = self._Popen(self)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/context.py", line 284, in _Popen
        return Popen(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_spawn_posix.py", line 32, in __init__
        super().__init__(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_fork.py", line 20, in __init__
        self._launch(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_spawn_posix.py", line 47, in _launch
        reduction.dump(process_obj, fp)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/reduction.py", line 60, in dump
        ForkingPickler(file, protocol).dump(obj)
    AttributeError: Can't pickle local object 'DecoupledGCN_TCN_unit.__init__.<locals>.<lambda>'
    (base) 
    
    opened by snorlaxse 4
  • installation issue

    installation issue

    Hello, thank you for providing such a great framework, but there was an error when I import the module. Could you please offer me a help? code:

    import omegaconf
    from openhands.apis.classification_model import ClassificationModel
    from openhands.core.exp_utils import get_trainer
    
    cfg = omegaconf.OmegaConf.load("1.yaml")
    trainer = get_trainer(cfg)
    
    model = ClassificationModel(cfg=cfg, trainer=trainer)
    model.init_from_checkpoint_if_available()
    model.fit()
    

    ERROR: Traceback (most recent call last): File "/home/hxz/project/pose_SLR/main.py", line 3, in from openhands.apis.classification_model import ClassificationModel ModuleNotFoundError: No module named 'openhands.apis'

    opened by Xiaolong-han 4
  • visibility object

    visibility object

    https://github.com/narVidhai/SLR/blob/2f26455c7cb530265618949203859b953224d0aa/scripts/mediapipe_extract.py#L48

    Doesn't this object contain visibility value as well. If so, we could add some logic for conditioning and merge it with the above function

    enhancement 
    opened by grohith327 3
  • About the wrong st_gcn checkpoints files provided on GSL

    About the wrong st_gcn checkpoints files provided on GSL

    import omegaconf
    from openhands.apis.inference import InferenceModel
    
    cfg = omegaconf.OmegaConf.load("GSL/gsl/st_gcn/config.yaml")
    model = InferenceModel(cfg=cfg)
    model.init_from_checkpoint_if_available()
    if cfg.data.test_pipeline.dataset.inference_mode:
        model.test_inference()
    else:
        model.compute_test_accuracy()
    
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    /tmp/ipykernel_6585/2983784194.py in <module>
          4 cfg = omegaconf.OmegaConf.load("GSL/gsl/st_gcn/config.yaml")
          5 model = InferenceModel(cfg=cfg)
    ----> 6 model.init_from_checkpoint_if_available()
          7 if cfg.data.test_pipeline.dataset.inference_mode:
          8     model.test_inference()
    
    ~/OpenHands/openhands/apis/inference.py in init_from_checkpoint_if_available(self, map_location)
         47         print(f"Loading checkpoint from: {ckpt_path}")
         48         ckpt = torch.load(ckpt_path, map_location=map_location)
    ---> 49         self.load_state_dict(ckpt["state_dict"], strict=False)
         50         del ckpt
         51 
    
    ~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict)
       1050         if len(error_msgs) > 0:
       1051             raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    -> 1052                                self.__class__.__name__, "\n\t".join(error_msgs)))
       1053         return _IncompatibleKeys(missing_keys, unexpected_keys)
       1054 
    
    RuntimeError: Error(s) in loading state_dict for InferenceModel:
    	size mismatch for model.encoder.A: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.st_gcn_networks.0.gcn.conv.weight: copying a param with shape torch.Size([128, 2, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 2, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.0.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.1.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.1.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.2.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.2.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.3.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.3.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.4.gcn.conv.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.4.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.5.gcn.conv.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.5.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.6.gcn.conv.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.6.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.7.gcn.conv.weight: copying a param with shape torch.Size([512, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.7.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.st_gcn_networks.8.gcn.conv.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 256, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.8.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.st_gcn_networks.9.gcn.conv.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 256, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.9.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.edge_importance.0: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.1: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.2: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.3: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.4: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.5: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.6: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.7: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.8: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.9: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    
    opened by snorlaxse 2
  • Refactoring code to remove bugs, code smells

    Refactoring code to remove bugs, code smells

    Following changes were made as part of the PR

    • Refactored data loading component of the package
    • Created/Renamed files under slr.datasets.isolated to allow for modularization
    • added __init__.py files for importing
    opened by grohith327 1
  • ST-GCN does not work for mediapipe

    ST-GCN does not work for mediapipe

    Currently the openpose layout seems to be hardcoded in graph_utils.py's Graph class. Should we also add a layout for mediapipe, or pass the joints via yml?

    bug 
    opened by GokulNC 1
  • Scale normalization for pose

    Scale normalization for pose

    For example, if the signer is moving forward or backward in the video, this augmentation will help normalize the scale throughout the video: https://github.com/AmitMY/pose-format#data-normalization

    Will involve explicitly specifying the joint (edge) based on which scaling has to be performed.

    enhancement 
    opened by GokulNC 1
  • Function not called

    Function not called

    https://github.com/narVidhai/SLR/blob/2f26455c7cb530265618949203859b953224d0aa/scripts/mediapipe_extract.py#L129

    Is this function not called anywhere?

    question 
    opened by grohith327 1
  • Support for GCN + BERT model

    Support for GCN + BERT model

    Add the model proposed in

    https://openaccess.thecvf.com/content/WACV2021W/HBU/papers/Tunga_Pose-Based_Sign_Language_Recognition_Using_GCN_and_BERT_WACVW_2021_paper.pdf

    enhancement 
    opened by Prem-kumar27 0
  • Sinusoidal Train/Val Accuracy

    Sinusoidal Train/Val Accuracy

    I'm noticing that the transformer and the SL-GCN architectures, while learning on WLASL2000, have an accuracy curve that resembles a sine curve with period of about 20 epochs and amplitude of about 5-10%. I am using the example config provided in the repo, and verified that the batches are being shuffled. I have also played around with logging on_step=True in case this is an artifact of torch.nn.log, but that didn't help either. Any ideas why this is happening?

    opened by leekezar 1
  • Lower accuracy when inferring a single video

    Lower accuracy when inferring a single video

    Hello,

    When I supply the inference model with multiple videos, the model predicts all of them right. But if I supply only one video then the prediction is wrong. I am curious about the cause of this? Can anyone please explain?

    Thank you!

    opened by burakkaraceylan 1
  • Using `pose-format` for consistent `.pose` files

    Using `pose-format` for consistent `.pose` files

    Seems like for pose data you are using pkl and h5. Also, that you have a custom mediapipe holistic script

    Personally I believe it would be more shareable, and faster, to use a binary format like https://github.com/AmitMY/pose-format Every pose file also declares its content, so you can transfer them between projects, or convert them to different formats with relative is.

    Besides the fact that it has a holistic loading script and multiple formats of OpenPose, it is a binary format which is faster to load, allows loading to numpy, torch and tensorflow, and can perform several operations on poses.

    It also allows the visualization of pose files, separately or on top of videos, and while admittedly this repository is not perfect, in my opinion it is better than having json or pkl files.

    opened by AmitMY 9
  • Consistent Dataset Handling

    Consistent Dataset Handling

    Very nice repo and documentation!

    I think this repository can benefit from using https://github.com/sign-language-processing/datasets as data loaders.

    It is fast, consistent across datasets, and allows loading videos / poses from multiple datasets. If a dataset you are using is not there, you can ask for it or add it yourself, it is a breeze.

    The repo supports many datasets, multiple pose estimation formats, binary pose files, fps and resolution manipulations, and dataset disk mapping.

    Finally, this would make this repo less complex. This repo does pre-training and fine-tuning, the other repo does datasets, and they could be used together.

    Please consider :)

    opened by AmitMY 5
  • Resume training, but load only parameters

    Resume training, but load only parameters

    Not the entire state stored by Lightning.

    Use an option called pretrained to achieve it, like this: https://github.com/AI4Bharat/OpenHands/blob/26c17ed0fca2ac786950d1f4edfa5a88419d06e6/examples/configs/include/decoupled_gcn.yaml#L1

    important feature 
    opened by GokulNC 1
Owner
AI4Bhārat
Building open-source AI solutions for India!
AI4Bhārat
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022