You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

Related tags

Deep LearningYOHO
Overview

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference frame to gain rotation invariance, the proposed descriptor achieves the rotation invariance by recent technologies of group equivariant feature learning, which brings more robustness to point density and noise. Meanwhile, the descriptor in YOHO also has a rotation equivariant part, which enables us to estimate the registration from just one correspondence hypothesis. Such property reduces the searching space for feasible transformations, thus greatly improves both the accuracy and the efficiency of YOHO. Extensive experiments show that YOHO achieves superior performances with much fewer needed RANSAC iterations on four widely-used datasets, the 3DMatch/3DLoMatch datasets, the ETH dataset and the WHU-TLS dataset.

News

  • 2021.9.1 Paper is accessible on arXiv.paper
  • 2021.8.29 The code of the PointNet backbone YOHO is released, which is poorer but highly generalizable. pn_yoho
  • 2021.7.6 The code of the FCGF backbone YOHO is released. Project page

Performance

Performance

Network Structure

Network

Requirements

Here we offer the FCGF backbone YOHO, so the FCGF requirements need to be met:

  • Ubuntu 14.04 or higher
  • CUDA 11.1 or higher
  • Python v3.7 or higher
  • Pytorch v1.6 or higher
  • MinkowskiEngine v0.5 or higher

Installation

Create the anaconda environment:

conda create -n fcgf_yoho python=3.7
conda activate fcgf_yoho
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch 
#We have checked pytorch1.7.1 and you can get the pytorch from https://pytorch.org/get-started/previous-versions/ accordingly.

#Install MinkowskiEngine, here we offer two ways according to the https://github.com/NVIDIA/MinkowskiEngine.git
(1) pip install git+https://github.com/NVIDIA/MinkowskiEngine.git
(2) #Or use the version we offer.
    cd MinkowskiEngine
    conda install openblas-devel -c anaconda
    export CUDA_HOME=/usr/local/cuda-11.1 #We have checked cuda-11.1.
    python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas
    cd ..

pip install -r requirements.txt

KNN build:

cd knn_search/
export CUDA_HOME=/usr/local/cuda-11.1 #We have checked cuda-11.1.
python setup.py build_ext --inplace
cd ..

Data Preparation

We need the 3DMatch dataset (Train, Test) and the 3DLoMatch dataset (Test).

We offer the origin train dataset containing the point clouds (.ply) and keypoints (.txt, 5000 per point cloud) here TrainData. With which, you can train the YOHO yourself.

We offer the origin test datasets containing the point clouds (.ply) and keypoints (.txt, 5000 per point cloud) here 3dmatch/3dLomatch, ETH and WHU-TLS.

Please place the data to ./data/origin_data for organizing the data structure as:

  • data
    • origin_data
      • 3dmatch
        • sun3d-home_at-home_at_scan1_2013_jan_1
          • Keypoints
          • PointCloud
      • 3dmatch_train
        • bundlefusion-apt0
          • Keypoints
          • PointCloud
      • ETH
        • wood_autumn
          • Keypoints
          • PointCloud
      • WHU-TLS
        • Park
          • Keypoints
          • PointCloud

Train

To train YOHO yourself, you need to prepare the origin trainset with the backbone FCGF. We have retrained the FCGF with the rotation argument in [0,50] deg and the backbone model is in ./model/backbone. With the TrainData downloaded above, you can create the YOHO trainset with:

python YOHO_trainset.py

Warning: the process above needs 300G storage space.

The training process of YOHO is two-stage, you can run which with the commands sequentially:

python Train.py --Part PartI
python Train.py --Part PartII

We also offer the pretrained models in ./model/PartI_train and ./model/PartII_train. If the model above is demaged by accident(Runtime error: storage has wrong size), we offer another copy here.model

Demo

With the pretrained models, you can try YOHO by:

python YOHO_testset.py --dataset demo
python Demo.py

Test on the 3DMatch and 3DLoMatch

With the TestData downloaded above, the test on 3DMatch and 3DLoMatch can be done by:

  • Prepare the testset
python YOHO_testset.py --dataset 3dmatch
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset 3dmatch    #YOHO-C on 3DMatch
python Test.py --Part PartI  --max_iter 1000 --dataset 3dLomatch  #YOHO-C on 3DLoMatch
python Test.py --Part PartII --max_iter 1000 --dataset 3dmatch    #YOHO-O on 3DMatch
python Test.py --Part PartII --max_iter 1000 --dataset 3dLomatch  #YOHO-O on 3DLoMatch

where PartI is yoho-c and PartII is yoho-o, max_iter is the ransac times, PartI should be run first. All the results will be placed to ./data/YOHO_FCGF.

Generalize to the ETH dataset

With the TestData downloaded above, without any refinement of the model trained on the indoor 3DMatch dataset, the generalization result on the outdoor ETH dataset can be got by:

  • Prepare the testset [if out of memory, you can (1)change the parameter "batch_size" in YOHO_testset.py-->batch_feature_extraction()-->loader from 4 to 1 (2)or carry out the command scene by scene by controlling the scene processed now in utils/dataset.py-->get_dataset_name()-->if name==ETH]
python YOHO_testset.py --dataset ETH --voxel_size 0.15
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset ETH --ransac_d 0.2 --tau_2 0.2 --tau_3 0.5 #YOHO-C on ETH
python Test.py --Part PartII --max_iter 1000 --dataset ETH --ransac_d 0.2 --tau_2 0.2 --tau_3 0.5 #YOHO-O on ETH

All the results will be placed to ./data/YOHO_FCGF.

Generalize to the WHU-TLS dataset

With the TestData downloaded above, without any refinement of the model trained on the indoor 3DMatch dataset, the generalization result on the outdoor TLS dataset WHU-TLS can be got by:

  • Prepare the testset
python YOHO_testset.py --dataset WHU-TLS --voxel_size 0.8
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset WHU-TLS --ransac_d 1 --tau_2 0.5 --tau_3 1 #YOHO-C on WHU-TLS
python Test.py --Part PartII --max_iter 1000 --dataset WHU-TLS --ransac_d 1 --tau_2 0.5 --tau_3 1 #YOHO-O on WHU-TLS

All the results will be placed to ./data/YOHO_FCGF.

Related Projects

We thanks greatly for the FCGF, PerfectMatch, Predator and WHU-TLS for the backbone and the datasets.

Owner
Haiping Wang
Master in LIESMARS, Wuhan University.
Haiping Wang
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022