RetinaNet-PyTorch - A RetinaNet Pytorch Implementation on remote sensing images and has the similar mAP result with RetinaNet in MMdetection

Overview

🚀 RetinaNet Horizontal Detector Based PyTorch

This is a horizontal detector RetinaNet implementation on remote sensing ship dataset (SSDD).
This re-implemented retinanet has the almost the same mAP(iou=0.25, score_iou=0.15) with the MMdetection.
RetinaNet Detector original paper link is here.

🌟 Performance of the implemented RetinaNet Detector

Detection Performance on Inshore image.

Detection Performance on Offshore image.

🎯 Experiment

The SSDD dataset, well-trained retinanet detector, resnet-50 pretrained model on ImageNet, loss curve, evaluation metrics results are below, you could follow my experiment.

  • SSDD dataset BaiduYun extraction code=pa8j
  • gt labels for eval data set BaiduYun extraction code=vqaw (ground-truth)
  • gt labels for train data set BaiduYun extraction code=datk (train-ground-truth)
  • well-trained retinanet detector weight file BaiduYun extraction code=b0e1
  • pre-trained ImageNet resnet-50 weight file BaiduYun extraction code=mmql
  • evaluation metrics(iou=0.25, score_iou=0.15)
Batch Size Input Size mAP (Mine) mAP (MMdet) Model Parameters
32 416 x 416 0.8828 0.8891 32.2 M
  • Other metrics (Precision/Recall/F1 score)
Precision (Mine) Precision (MMDet) Recall (Mine) Recall (MMdet) F1 score (Mine) F1 score(MMdet)
0.8077 0.8502 0.9062 0.91558 0.8541 0.8817
  • loss curve

  • mAP metrics on training set and val set

  • learning rate curve (using warmup lr rate)

💥 Get Started

Installation

A. Install requirements:

conda create -n retinanet python=3.7
conda activate retinanet
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install -r requirements.txt  

Note: If you meet some troubles about installing environment, you can see the check.txt for more details.

B. Install nms module:

cd utils/HBB_NMS_GPU
make

Demo

A. Set project's data path

you should set project's data path in config.py first.

# config.py
# Note: all the path should be absolute path.  
data_path = r'/$ROOT_PATH/SSDD_data/'  # absolute data root path  
output_path = r'/$ROOT_PATH/Output/'  # absolute model output path  
  
inshore_data_path = r'/$ROOT_PATH/SSDD_data_InShore/'  # absolute Inshore data path  
offshore_data_path = r'/$ROOT_PATH/SSDD_data_OffShore/'  # absolute Offshore data path  

# An example  
$ROOT_PATH
    -SSDD_data/
        -train/  # train set 
	    -*.jpg
	-val/  # val set
	    -*.jpg
	-annotations/  # gt label in json format (for coco evaluation method)  
	    -instances_train.json  
	    -instances_val.json  
	-ground-truth/  
	    -*.txt  # gt label in txt format (for voc evaluation method and evaluae inshore and offshore scence)  
	-train-ground-truth/
	    -*.txt  # gt label in txt format (for voc evaluation method)
    -SSDD_data_InShore/  
        -images/
	    -*.jpg  # inshore scence images
	-ground-truth/
	    -*.txt  # inshore scence gt labels  
    -SSDD_data_OffShore/  
        -images/  
	    -*.jpg  # offshore scence images
	-ground-truth/  
	    -*.txt  # offshore scence gt labels

    -Output/
        -checkpoints/
	    - the path of saving tensorboard log event
	-evaluate/  
	    - the path of saving model detection results for evaluate (coco/voc/inshore/offshore)  

B. you should download the well-trained SSDD Dataset weight file.

# download and put the well-trained pth file in checkpoints/ folder 
# and run the simple inferene script to get detection result  
# you can find the model output predict.jpg in show_result/ folder.  

python show.py --chkpt 54_1595.pth --result_path show_result --pic_name demo1.jpg  

Train

A. Prepare dataset

you should structure your dataset files as shown above.

B. Manual set project's hyper parameters

you should manual set projcet's hyper parameters in config.py

1. data file structure (Must Be Set !)  
   has shown above.  

2. Other settings (Optional)  
   if you want to follow my experiment, dont't change anything.  

C. Train RetinaNet detector on SSDD dataset with pretrianed resnet-50 from scratch

C.1 Download the pre-trained resnet-50 pth file

you should download the pre-trained ImageNet Dataset resnet-50 pth file first and put this pth file in resnet_pretrained_pth/ folder.

C.2 Train RetinaNet Detector on SSDD Dataset with pre-trained pth file

# with batchsize 32 and using voc evaluation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method voc  
  
# with batchsize 32 and using coco evalutation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method coco  

Note: If you find classification loss change slowly, please be patient, it's not a mistake.

Evaluation

A. evaluate model performance on val set.

python eval.py --device 0 --evaluate True --FPS False --Offshore False --Inshore False --chkpt 54_1595.pth

B. evaluate model performance on InShore and Offshore sences.

python eval.py --device 0 --evaluate False --FPS False --Offshore True --Inshore True --chkpt 54_1595.pth

C. evaluate model FPS

python eval.py --device 0 --evaluate False --FPS True --Offshore False --Inshore Fasle --chkpt 54_1595.pth

💡 Inferences

Thanks for these great work.
https://github.com/ming71/DAL
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Owner
Fang Zhonghao
Email:[email protected]
Fang Zhonghao
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin SinanoÄŸlu 2 Mar 04, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022