RetinaNet-PyTorch - A RetinaNet Pytorch Implementation on remote sensing images and has the similar mAP result with RetinaNet in MMdetection

Overview

🚀 RetinaNet Horizontal Detector Based PyTorch

This is a horizontal detector RetinaNet implementation on remote sensing ship dataset (SSDD).
This re-implemented retinanet has the almost the same mAP(iou=0.25, score_iou=0.15) with the MMdetection.
RetinaNet Detector original paper link is here.

🌟 Performance of the implemented RetinaNet Detector

Detection Performance on Inshore image.

Detection Performance on Offshore image.

🎯 Experiment

The SSDD dataset, well-trained retinanet detector, resnet-50 pretrained model on ImageNet, loss curve, evaluation metrics results are below, you could follow my experiment.

  • SSDD dataset BaiduYun extraction code=pa8j
  • gt labels for eval data set BaiduYun extraction code=vqaw (ground-truth)
  • gt labels for train data set BaiduYun extraction code=datk (train-ground-truth)
  • well-trained retinanet detector weight file BaiduYun extraction code=b0e1
  • pre-trained ImageNet resnet-50 weight file BaiduYun extraction code=mmql
  • evaluation metrics(iou=0.25, score_iou=0.15)
Batch Size Input Size mAP (Mine) mAP (MMdet) Model Parameters
32 416 x 416 0.8828 0.8891 32.2 M
  • Other metrics (Precision/Recall/F1 score)
Precision (Mine) Precision (MMDet) Recall (Mine) Recall (MMdet) F1 score (Mine) F1 score(MMdet)
0.8077 0.8502 0.9062 0.91558 0.8541 0.8817
  • loss curve

  • mAP metrics on training set and val set

  • learning rate curve (using warmup lr rate)

💥 Get Started

Installation

A. Install requirements:

conda create -n retinanet python=3.7
conda activate retinanet
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install -r requirements.txt  

Note: If you meet some troubles about installing environment, you can see the check.txt for more details.

B. Install nms module:

cd utils/HBB_NMS_GPU
make

Demo

A. Set project's data path

you should set project's data path in config.py first.

# config.py
# Note: all the path should be absolute path.  
data_path = r'/$ROOT_PATH/SSDD_data/'  # absolute data root path  
output_path = r'/$ROOT_PATH/Output/'  # absolute model output path  
  
inshore_data_path = r'/$ROOT_PATH/SSDD_data_InShore/'  # absolute Inshore data path  
offshore_data_path = r'/$ROOT_PATH/SSDD_data_OffShore/'  # absolute Offshore data path  

# An example  
$ROOT_PATH
    -SSDD_data/
        -train/  # train set 
	    -*.jpg
	-val/  # val set
	    -*.jpg
	-annotations/  # gt label in json format (for coco evaluation method)  
	    -instances_train.json  
	    -instances_val.json  
	-ground-truth/  
	    -*.txt  # gt label in txt format (for voc evaluation method and evaluae inshore and offshore scence)  
	-train-ground-truth/
	    -*.txt  # gt label in txt format (for voc evaluation method)
    -SSDD_data_InShore/  
        -images/
	    -*.jpg  # inshore scence images
	-ground-truth/
	    -*.txt  # inshore scence gt labels  
    -SSDD_data_OffShore/  
        -images/  
	    -*.jpg  # offshore scence images
	-ground-truth/  
	    -*.txt  # offshore scence gt labels

    -Output/
        -checkpoints/
	    - the path of saving tensorboard log event
	-evaluate/  
	    - the path of saving model detection results for evaluate (coco/voc/inshore/offshore)  

B. you should download the well-trained SSDD Dataset weight file.

# download and put the well-trained pth file in checkpoints/ folder 
# and run the simple inferene script to get detection result  
# you can find the model output predict.jpg in show_result/ folder.  

python show.py --chkpt 54_1595.pth --result_path show_result --pic_name demo1.jpg  

Train

A. Prepare dataset

you should structure your dataset files as shown above.

B. Manual set project's hyper parameters

you should manual set projcet's hyper parameters in config.py

1. data file structure (Must Be Set !)  
   has shown above.  

2. Other settings (Optional)  
   if you want to follow my experiment, dont't change anything.  

C. Train RetinaNet detector on SSDD dataset with pretrianed resnet-50 from scratch

C.1 Download the pre-trained resnet-50 pth file

you should download the pre-trained ImageNet Dataset resnet-50 pth file first and put this pth file in resnet_pretrained_pth/ folder.

C.2 Train RetinaNet Detector on SSDD Dataset with pre-trained pth file

# with batchsize 32 and using voc evaluation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method voc  
  
# with batchsize 32 and using coco evalutation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method coco  

Note: If you find classification loss change slowly, please be patient, it's not a mistake.

Evaluation

A. evaluate model performance on val set.

python eval.py --device 0 --evaluate True --FPS False --Offshore False --Inshore False --chkpt 54_1595.pth

B. evaluate model performance on InShore and Offshore sences.

python eval.py --device 0 --evaluate False --FPS False --Offshore True --Inshore True --chkpt 54_1595.pth

C. evaluate model FPS

python eval.py --device 0 --evaluate False --FPS True --Offshore False --Inshore Fasle --chkpt 54_1595.pth

💡 Inferences

Thanks for these great work.
https://github.com/ming71/DAL
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Owner
Fang Zhonghao
Fang Zhonghao
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022