Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Overview
Table of Content
  1. Introduction
  2. Datasets
  3. Getting Started
  4. Training & Evaluation

CPM: Color-Pattern Makeup Transfer

  • CPM is a holistic makeup transfer framework that outperforms previous state-of-the-art models on both light and extreme makeup styles.
  • CPM consists of an improved color transfer branch (based on BeautyGAN) and a novel pattern transfer branch.
  • We also introduce 4 new datasets (both real and synthesis) to train and evaluate CPM.
teaser.png
CPM can replicate both colors and patterns from a reference makeup style to another image.

Details of the dataset construction, model architecture, and experimental results can be found in our following paper:

@inproceedings{m_Nguyen-etal-CVPR21,
  author = {Thao Nguyen and Anh Tran and Minh Hoai},
  title = {Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup Transfer},
  year = {2021},
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)}
}

Please CITE our paper whenever our datasets or model implementation is used to help produce published results or incorporated into other software.

Open In Colab - arXiv - project page


Datasets

We introduce 4 new datasets: CPM-Real, CPM-Synt-1, CPM-Synt-2, and Stickers datasets. Besides, we also use published LADN's Dataset & Makeup Transfer Dataset.

CPM-Real and Stickers are crawled from Google Image Search, while CPM-Synt-1 & 2 are built on Makeup Transfer and Stickers. (Click on dataset name to download)

Name #imgs Description -
CPM-Real 3895 real - makeup styles CPM-Real.png
CPM-Synt-1 5555 synthesis - makeup images with pattern segmentation mask ./imgs/CPM-Synt-1.png
CPM-Synt-2 1625 synthesis - triplets: makeup, non-makeup, ground-truth ./imgs/CPM-Synt-2.png
Stickers 577 high-quality images with alpha channel Stickers.png

Dataset Folder Structure can be found here.

By downloading these datasets, USER agrees:

  • to use these datasets for research or educational purposes only
  • to not distribute or part of these datasets in any original or modified form.
  • and to cite our paper whenever these datasets are employed to help produce published results.

Getting Started

Requirements
Installation
# clone the repo
git clone https://github.com/VinAIResearch/CPM.git
cd CPM

# install dependencies
conda env create -f environment.yml
Download pre-trained models
mkdir checkpoints
cd checkpoints
wget https://public.vinai.io/CPM_checkpoints/color.pth
wget https://public.vinai.io/CPM_checkpoints/pattern.pth
  • Download [PRNet pre-trained model] from Drive. Put it in PRNet/net-data
Usage

➡️ You can now try it in Google Colab Open in Colab

# Color+Pattern: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png

# Color Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --color_only

# Pattern Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --pattern_only

Result image will be saved in result.png

result
From left to right: Style, Input & Output

Training and Evaluation

As stated in the paper, the Color Branch and Pattern Branch are totally independent. Yet, they shared the same workflow:

  1. Data preparation: Generating texture_map of faces.

  2. Training

Please redirect to Color Branch or Pattern Branch for further details.


🌿 If you have trouble running the code, please read Trouble Shooting before creating an issue. Thank you 🌿

Trouble Shooting
  1. [Solved] ImportError: libGL.so.1: cannot open shared object file: No such file or directory:

    sudo apt update
    sudo apt install libgl1-mesa-glx
    
  2. [Solved] RuntimeError: Expected tensor for argument #1 'input' to have the same device as tensor for argument #2 'weight'; but device 1 does not equal 0 (while checking arguments for cudnn_convolution) Add CUDA VISIBLE DEVICES before .py. Ex:

    CUDA_VISIBLE_DEVICES=0 python main.py
    
  3. [Solved] RuntimeError: cuda runtime error (999) : unknown error at /opt/conda/conda-bld/pytorch_1595629403081/work/aten/src/THC/THCGeneral.cpp:47

    sudo rmmod nvidia_uvm
    sudo modprobe nvidia_uvm
    
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022