Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Related tags

Deep LearningDisAlign
Overview

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

[Paper][Code]

We implement the classification, object detection and instance segmentation tasks based on our cvpods. The users should install cvpods first and run the experiments in this repo.

Changelog

  • 4.23.2021 Update the DisAlign on LVIS v0.5(Mask R-CNN + Res50)
  • 4.12.2021 Update the README

0. How to Use

  • Step-1: Install the latest cvpods.
  • Step-2: cd cvpods
  • Step-3: Prepare dataset for different tasks.
  • Step-4: git clone https://github.com/Megvii-BaseDetection/DisAlign playground_disalign
  • Step-5: Enter one folder and run pods_train --num-gpus 8
  • Step-6: Use pods_test --num-gpus 8 to evaluate the last the checkpoint

1. Image Classification

We support the the following three datasets:

  • ImageNet-LT Dataset
  • iNaturalist-2018 Dataset
  • Place-LT Dataset

We refer the user to CLS_README for more details.

2. Object Detection/Instance Segmentation

We support the two versions of the LVIS dataset:

  • LVIS v0.5
  • LVIS v1.0

Highlight

  1. To speedup the evaluation on LVIS dataset, we provide the C++ optimized evaluation api by modifying the coco_eval(C++) in cvpods.
  • The C++ version lvis_eval API will save ~30% time when calculating the mAP.
  1. We provide support for the metric of AP_fixed and AP_pool proposed in large-vocab-devil
  2. We will support more recent works on long-tail detection in this project(e.g. EQLv2, CenterNet2, etc.) in the future.

We refer the user to DET_README for more details.

3. Semantic Segmentation

We adopt the mmsegmentation as the codebase for runing all experiments of DisAlign. Currently, the user should use DisAlign_Seg for the semantic segmentation experiments. We will add the support for these experiments in cvpods in the future.

Acknowledgement

Thanks for the following projects:

Citing DisAlign

If you are using the DisAlign in your research or with to refer to the baseline results publised in this repo, please use the following BibTex entry.

@inproceedings{zhang2021disalign,
  title={Distribution Alignment: A Unified Framework for Long-tail Visual Recognition.},
  author={Zhang, Songyang and Li, Zeming and Yan, Shipeng and He, Xuming and Sun, Jian},
  booktitle={CVPR},
  year={2021}
}

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Comments
  • scale in cosine classifier

    scale in cosine classifier

    Hi, thanks for your great work! I notice you use the cosine classifier in many experiments and it can get a better baseline. The formula is as follows

    image

    I am wondering the value of s?

    opened by L1aoXingyu 5
  •  Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Hello. Thank you for your project! I'm testing your code on my custom dataset. My task is classification. I have a question about your code implementation.

    https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L56-L62

    From my understanding, in stage 2, remove the linear layer used in stage 1 and add DisAlign Linear Layer. And freeze all parts except for logit_scale, logit_bias, and confidence_layer. At this time, the weight and bias of DisAlignLinear are also frozen. (self.weight, self.bias) Is my understanding correct?

    If so, are the weight and bias of DisAlignLinearLayer fixed after the initialization? (The weight and bias of the linear layer in stage 1 are not copied either)

    If my understanding is correct, why is the weight of DisAlignLinear also frozen?

    I will wait for your reply. thanks!

    opened by jeongHwarr 4
  • Where is the DisAlignLinear module?

    Where is the DisAlignLinear module?

    Hello. Thank you for your impressive project!

    I want to apply DisAlign to classification. However, an error occurs in the import part. https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L7 I coudn't find the DisAlignLinear in cvpods.layers. and there also isn't exist at https://github.com/Megvii-BaseDetection/cvpods/tree/master/cvpods/layers How can I solve this problem?

    Thank you!

    opened by jeongHwarr 4
  • Can someone kindly share their codes of Classification task on ImageNet_LT?

    Can someone kindly share their codes of Classification task on ImageNet_LT?

    I tried to train the proposed method on ImageNet_LT, but I can only get an average testing rate about 49%, which is far from the rate described in the paper (52.9). Some of the details regarding my implementations are given as follows: (1) The feature extractor is ResNexT-50 and the head classifier is a linear classifier. The testing accuracy in Stage-One is 43.9%, which is OK.

    (2) The testing accuracy of adopting cRT method in Stage-Two is 49.6%, which is identical to one reported in other papers. (3) When fine-tuning the model in Stage-2, both the feature-extractor and head classifier are frozen, and a DisAliLinear model (which is implemented in CVPODs) is retrained. The testing accuracy can only reach 48.8%, which is far away from the one reported in your paper.

    opened by smallcube 4
  • The code for semantic segmentation is missing

    The code for semantic segmentation is missing

    Hi, thank you for the nice work, but the code for semantic segmentation is missing and the URL for it in the README could not be opened. Could you please fix this issue?

    opened by curiosity654 3
  • About the reference Distribution p_r in Eq. (10)

    About the reference Distribution p_r in Eq. (10)

    Hi, Thank you for providing your code. Here I was wondering the Equation (10) in your paper (The definition of p_r), which seems not to be a distribution. Since every x_i can only have one label, the reference distribution p_r(y| x_i) will be the distribution like (0, 0, 0,...,w_c, 0, 0,...,0). And the sum of this distribution is w_c, but not 1.

    Could you help me understand this equation? Thanks in advance.

    opened by Kevinz-code 3
  • import error

    import error

    Hi, thanks for the great work. Maybe I missed it, but it seems that the code for this project has been incorporated into cvpods. I couldn't launch any experiments due to ImportErrors like: from cvpods.layers import DisAlignLinear ImportError: cannot import name 'DisAlignLinear' from 'cvpods.layers' Also, I didn't find the corresponding functions in cvpods.

    Any help will be appreciated. Thanks.

    opened by YUE-FAN 2
  • about the confidence score σ(x)

    about the confidence score σ(x)

    In the paper, the σ(x) is implemented as a linear layer followed by a non-linear activation function (e.g., sigmoid function) for all input x. How to understand the input x?the matrix of raw iamge, or the extracted features, even or cls_score? Thank you!

    opened by lzed2399 2
  • exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    Dear author, I have some questions about the code and paper:

    1. exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground Why "exp_reweight" is multiplied by the coefficient "num_foreground"? It is not mentioned in the paper.
    2. Is "K" in the empirical class frequencies r = [r1, · · · , rK] on the training set in the paper the same as the class number C of the training set?
    opened by Liu-wanbing 2
  • The DisAlign_Seg page can't open

    The DisAlign_Seg page can't open

    opened by Kittywyk 1
  • Do you use validation dataset?

    Do you use validation dataset?

    https://github.com/Megvii-BaseDetection/DisAlign/blob/main/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/config.py#L31

    It seems that you only use test dataset? What is the reason for that?

    opened by qianlanwyd 1
  • How can I test and augtest the trained semseg DisAlign model?

    How can I test and augtest the trained semseg DisAlign model?

    opened by jh151170 0
  • the code question in semantic_seg

    the code question in semantic_seg

    Hi, I have a questation about the logit_scale and logit_bias in semantic_seg. The shape of the above parameter is (1, num_classes, 1, 1), why not is (1, num_classes, 512, 512) which is matched the input image size for semantic segmenation.

    opened by Ianresearch 8
  • Value of the learned scale and bias vector?

    Value of the learned scale and bias vector?

    Hi, did you check the value change of the learned scale and bias vector throughout the training process? I find the value of them change in the first few iterations and remain stable in the rest time on my own classification dataset. I wonder how the learned vectors look like in your paper? Thanks!

    opened by Jacobew 1
Owner
BaseDetection Team of Megvii
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022