Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Overview

Training Reproduce of PSPNet.

(Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with supporting Sync Batch Norm, see https://github.com/hszhao/semseg.)

(Updated 2019/02/26. A major change of code structure. For the version before, checkout v0.9 https://github.com/holyseven/PSPNet-TF-Reproduce/tree/v0.9.)

This is an implementation of PSPNet (from training to test) in pure Tensorflow library (tested on TF1.12, Python 3).

  • Supported Backbones: ResNet-V1-50, ResNet-V1-101 and other ResNet-V1s can be easily added.
  • Supported Databases: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.
  • Supported Modes: training, validation and inference with multi-scale inputs.
  • More things: L2-SP regularization and sync batch normalization implementation.

L2-SP Regularization

L2-SP regularization is a variant of L2 regularization. Instead of the origin like L2 does, L2-SP sets the pre-trained model as reference, just like (w - w0)^2, where w0 is the pre-trained model. Simple but effective. More details about L2-SP can be found in the paper and the code.

If you find the L2-SP useful for your research (not limited in image segmentation), please consider citing our work:

@inproceedings{li2018explicit,
  author    = {Li, Xuhong and Grandvalet, Yves and Davoine, Franck},
  title     = {Explicit Inductive Bias for Transfer Learning with Convolutional Networks},
  booktitle={International Conference on Machine Learning (ICML)},
   pages     = {2830--2839},
  year      = {2018}
}

Sync Batch Norm

When concerning image segmentation, batch size is usually limited. Small batch size will make the gradients instable and harm the performance, especially for batch normalization layers. Multi-GPU settings by default does not help because the statistics in batch normalization layer are computed independently within each GPU. More discussion can be found here and here.

This repo resolves this problem in pure python and pure Tensorflow by simply using a list as input. The main idea is located in model/utils_mg.py

I do not know if this is the first implementation of sync batch norm in Tensorflow, but there is already an implementation in PyTorch and some applications.

Update: There is other implementation that uses NCCL to gather statistics across GPUs, see in tensorpack. However, TF1.1 does not support gradients passing by nccl_all_reduce. Plus, ppc64le with tf1.10, cuda9.0 and nccl1.3.5 was not able to run this code. No idea why, and do not want to spend a lot of time on this. Maybe nccl2 can solve this.

Results

Numerical Results

  • Random scaling for all
  • Random rotation for SBD
  • SS/MS on validation set
  • Welcome to correct and fill in the table
Backbones L2 L2-SP
Cityscapes (train set: 3K) ResNet-50 76.9/? 77.9/?
ResNet-101 77.9/? 78.6/?
Cityscapes (coarse + train set: 20K + 3K) ResNet-50
ResNet-101 80.0/80.9 80.1/81.2*
SBD ResNet-50 76.5/? 76.6/?
ResNet-101 77.5/79.2 78.5/79.9
ADE20K ResNet-50 41.92/43.09
ResNet-101 42.80/?

*This model gets 80.3 without post-processing methods on Cityscapes test set (1525).

Qualitative Results on Cityscapes

Devil Details

Training and Evaluation

Download the databases with the links: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.

Prepare the database for Cityscapes by generating *labelTrainIds.png images with createTrainIdLabelImgs, and then change the code in database/reader.py or move undersired images to other directory.

Download pretrained models.

cd z_pretrained_weights
sh download_resnet_v1_101.sh

A script of training resnet-50 on ADE20K, getting around 41.92 mIoU scores (with single-scale test):

python ./run.py --network 'resnet_v1_50' --visible_gpus '0,1' --reader_method 'queue' --lrn_rate 0.01 --weight_decay_mode 0 --weight_decay_rate 0.0001 --weight_decay_rate2 0.001 --database 'ADE' --subsets_for_training 'train' --batch_size 8 --train_image_size 480 --snapshot 30000 --train_max_iter 90000 --test_image_size 480 --random_rotate 0 --fine_tune_filename './z_pretrained_weights/resnet_v1_50.ckpt'

Test and Infer

Test with multi-scale (set batch_size as large as you can to speed up).

python predict.py --visible_gpus '0' --network 'resnet_v1_101' --database 'ADE' --weights_ckpt './log/ADE/PSP-resnet_v1_101-gpu_num2-batch_size8-lrn_rate0.01-random_scale1-random_rotate1-480-60000-train-1-0.0001-0.001-0-0-1-1/snapshot/model.ckpt-60000' --test_subset 'val' --test_image_size 480 --batch_size 8 --ms 1 --mirror 1

Infer one image (with multi-scale).

python demo_infer.py --database 'Cityscapes' --network 'resnet_v1_101' --weights_ckpt './log/Cityscapes/old/model.ckpt-50000' --test_image_size 864 --batch_size 4 --ms 1

Uncertainties for Training Details:

  1. (Cityscapes only) Whether finely labeled data in the first training stage should be involved?
  2. (Cityscapes only) Whether the (base) learning rate should be reduced in the second training stage?
  3. Whether logits should be resized to original size before computing the loss?
  4. Whether new layers should receive larger learning rate?
  5. About weired padding behavior of tf.image.resize_images(). Whether the align_corners=True should be set?
  6. What is optimal hyperparameter of decay for statistics of batch normalization layers? (0.9, 0.95, 0.9997)
  7. may be more but not sure how much these little changes can effect the results ...
  8. Welcome to discuss !

Change Log

26 Febuary, 2019

  • Code structure: on-the-fly evaluation during training.
  • Code structure: wrapping of the model.
  • Add tf.data support, but with queue-based reader is faster.
  • print results using python utils.py in experiment_manager dir.
  • The default environment is Python 3 and TF1.12. OpenCV is needed for predicting and demo_infer.
  • The previous version becomes a branch of this repo named as v0.9.

External links

Pyramid Scene Parsing Network paper and official github.

Owner
Li Xuhong
Researcher at Baidu Research, focus on interpretable deep learning and transfer learning.
Li Xuhong
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022