PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Overview

PointRCNN

PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

teaser

Code release for the paper PointRCNN:3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Authors: Shaoshuai Shi, Xiaogang Wang, Hongsheng Li.

[arXiv]  [Project Page] 

New: We have provided another implementation of PointRCNN for joint training with multi-class in a general 3D object detection toolbox [OpenPCDet].

Introduction

In this work, we propose the PointRCNN 3D object detector to directly generated accurate 3D box proposals from raw point cloud in a bottom-up manner, which are then refined in the canonical coordinate by the proposed bin-based 3D box regression loss. To the best of our knowledge, PointRCNN is the first two-stage 3D object detector for 3D object detection by using only the raw point cloud as input. PointRCNN is evaluated on the KITTI dataset and achieves state-of-the-art performance on the KITTI 3D object detection leaderboard among all published works at the time of submission.

For more details of PointRCNN, please refer to our paper or project page.

Supported features and ToDo list

  • Multiple GPUs for training
  • GPU version rotated NMS
  • Faster PointNet++ inference and training supported by Pointnet2.PyTorch
  • PyTorch 1.0
  • TensorboardX
  • Still in progress

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 3.6+
  • PyTorch 1.0

Install PointRCNN

a. Clone the PointRCNN repository.

git clone --recursive https://github.com/sshaoshuai/PointRCNN.git

If you forget to add the --recursive parameter, just run the following command to clone the Pointnet2.PyTorch submodule.

git submodule update --init --recursive

b. Install the dependent python libraries like easydict,tqdm, tensorboardX etc.

c. Build and install the pointnet2_lib, iou3d, roipool3d libraries by executing the following command:

sh build_and_install.sh

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

PointRCNN
├── data
│   ├── KITTI
│   │   ├── ImageSets
│   │   ├── object
│   │   │   ├──training
│   │   │      ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │   ├──testing
│   │   │      ├──calib & velodyne & image_2
├── lib
├── pointnet2_lib
├── tools

Here the images are only used for visualization and the road planes are optional for data augmentation in the training.

Pretrained model

You could download the pretrained model(Car) of PointRCNN from here(~15MB), which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance on validation set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:96.91, 89.53, 88.74
bev  AP:90.21, 87.89, 85.51
3d   AP:89.19, 78.85, 77.91
aos  AP:96.90, 89.41, 88.54

Quick demo

You could run the following command to evaluate the pretrained model (set RPN.LOC_XZ_FINE=False since it is a little different with the default configuration):

python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt PointRCNN.pth --batch_size 1 --eval_mode rcnn --set RPN.LOC_XZ_FINE False

Inference

  • To evaluate a single checkpoint, run the following command with --ckpt to specify the checkpoint to be evaluated:
python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt ../output/rpn/ckpt/checkpoint_epoch_200.pth --batch_size 4 --eval_mode rcnn 
  • To evaluate all the checkpoints of a specific training config file, add the --eval_all argument, and run the command as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --eval_mode rcnn --eval_all
  • To generate the results on the test split, please modify the TEST.SPLIT=TEST and add the --test argument.

Here you could specify a bigger --batch_size for faster inference based on your GPU memory. Note that the --eval_mode argument should be consistent with the --train_mode used in the training process. If you are using --eval_mode=rcnn_offline, then you should use --rcnn_eval_roi_dir and --rcnn_eval_feature_dir to specify the saved features and proposals of the validation set. Please refer to the training section for more details.

Training

Currently, the two stages of PointRCNN are trained separately. Firstly, to use the ground truth sampling data augmentation for training, we should generate the ground truth database as follows:

python generate_gt_database.py --class_name 'Car' --split train

Training of RPN stage

  • To train the first proposal generation stage of PointRCNN with a single GPU, run the following command:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200
  • To use mutiple GPUs for training, simply add the --mgpus argument as follows:
CUDA_VISIBLE_DEVICES=0,1 python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200 --mgpus

After training, the checkpoints and training logs will be saved to the corresponding directory according to the name of your configuration file. Such as for the default.yaml, you could find the checkpoints and logs in the following directory:

PointRCNN/output/rpn/default/

which will be used for the training of RCNN stage.

Training of RCNN stage

Suppose you have a well-trained RPN model saved at output/rpn/default/ckpt/checkpoint_epoch_200.pth, then there are two strategies to train the second stage of PointRCNN.

(a) Train RCNN network with fixed RPN network to use online GT augmentation: Use --rpn_ckpt to specify the path of a well-trained RPN model and run the command as follows:

python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn --epochs 70  --ckpt_save_interval 2 --rpn_ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth

(b) Train RCNN network with offline GT augmentation:

  1. Generate the augmented offline scenes by running the following command:
python generate_aug_scene.py --class_name Car --split train --aug_times 4
  1. Save the RPN features and proposals by adding --save_rpn_feature:
  • To save features and proposals for the training, we set TEST.RPN_POST_NMS_TOP_N=300 and TEST.RPN_NMS_THRESH=0.85 as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature --set TEST.SPLIT train_aug TEST.RPN_POST_NMS_TOP_N 300 TEST.RPN_NMS_THRESH 0.85
  • To save features and proposals for the evaluation, we keep TEST.RPN_POST_NMS_TOP_N=100 and TEST.RPN_NMS_THRESH=0.8 as default:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature
  1. Now we could train our RCNN network. Note that you should modify TRAIN.SPLIT=train_aug to use the augmented scenes for the training, and use --rcnn_training_roi_dir and --rcnn_training_feature_dir to specify the saved features and proposals in the above step:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn_offline --epochs 30  --ckpt_save_interval 1 --rcnn_training_roi_dir ../output/rpn/default/eval/epoch_200/train_aug/detections/data --rcnn_training_feature_dir ../output/rpn/default/eval/epoch_200/train_aug/features

For the offline GT sampling augmentation, the default setting to train the RCNN network is RCNN.ROI_SAMPLE_JIT=True, which means that we sample the RoIs and calculate their GTs in the GPU. I also provide the CPU version proposal sampling, which is implemented in the dataloader, and you could enable this feature by setting RCNN.ROI_SAMPLE_JIT=False. Typically the CPU version is faster but costs more CPU resources since they use mutiple workers.

All the codes supported mutiple GPUs, simply add the --mgpus argument as above. And you could also increase the --batch_size by using multiple GPUs for training.

Note:

  • The strategy (a), online augmentation, is more elegant and easy to train.
  • The best model is trained by the offline augmentation strategy with CPU proposal sampling (set RCNN.ROI_SAMPLE_JIT=False).
  • Theoretically, the online augmentation should be better, but currently the online augmentation is a bit lower than the offline augmentation, and I still didn't know why. All discussions are welcomed.
  • I am still working on this codes to make it more stable.

Citation

If you find this work useful in your research, please consider cite:

@InProceedings{Shi_2019_CVPR,
    author = {Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}
Owner
Shaoshuai Shi
Ph.D @ MMLab-CUHK
Shaoshuai Shi
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023