PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Overview

PointRCNN

PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

teaser

Code release for the paper PointRCNN:3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Authors: Shaoshuai Shi, Xiaogang Wang, Hongsheng Li.

[arXiv]  [Project Page] 

New: We have provided another implementation of PointRCNN for joint training with multi-class in a general 3D object detection toolbox [OpenPCDet].

Introduction

In this work, we propose the PointRCNN 3D object detector to directly generated accurate 3D box proposals from raw point cloud in a bottom-up manner, which are then refined in the canonical coordinate by the proposed bin-based 3D box regression loss. To the best of our knowledge, PointRCNN is the first two-stage 3D object detector for 3D object detection by using only the raw point cloud as input. PointRCNN is evaluated on the KITTI dataset and achieves state-of-the-art performance on the KITTI 3D object detection leaderboard among all published works at the time of submission.

For more details of PointRCNN, please refer to our paper or project page.

Supported features and ToDo list

  • Multiple GPUs for training
  • GPU version rotated NMS
  • Faster PointNet++ inference and training supported by Pointnet2.PyTorch
  • PyTorch 1.0
  • TensorboardX
  • Still in progress

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 3.6+
  • PyTorch 1.0

Install PointRCNN

a. Clone the PointRCNN repository.

git clone --recursive https://github.com/sshaoshuai/PointRCNN.git

If you forget to add the --recursive parameter, just run the following command to clone the Pointnet2.PyTorch submodule.

git submodule update --init --recursive

b. Install the dependent python libraries like easydict,tqdm, tensorboardX etc.

c. Build and install the pointnet2_lib, iou3d, roipool3d libraries by executing the following command:

sh build_and_install.sh

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

PointRCNN
├── data
│   ├── KITTI
│   │   ├── ImageSets
│   │   ├── object
│   │   │   ├──training
│   │   │      ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │   ├──testing
│   │   │      ├──calib & velodyne & image_2
├── lib
├── pointnet2_lib
├── tools

Here the images are only used for visualization and the road planes are optional for data augmentation in the training.

Pretrained model

You could download the pretrained model(Car) of PointRCNN from here(~15MB), which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance on validation set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:96.91, 89.53, 88.74
bev  AP:90.21, 87.89, 85.51
3d   AP:89.19, 78.85, 77.91
aos  AP:96.90, 89.41, 88.54

Quick demo

You could run the following command to evaluate the pretrained model (set RPN.LOC_XZ_FINE=False since it is a little different with the default configuration):

python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt PointRCNN.pth --batch_size 1 --eval_mode rcnn --set RPN.LOC_XZ_FINE False

Inference

  • To evaluate a single checkpoint, run the following command with --ckpt to specify the checkpoint to be evaluated:
python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt ../output/rpn/ckpt/checkpoint_epoch_200.pth --batch_size 4 --eval_mode rcnn 
  • To evaluate all the checkpoints of a specific training config file, add the --eval_all argument, and run the command as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --eval_mode rcnn --eval_all
  • To generate the results on the test split, please modify the TEST.SPLIT=TEST and add the --test argument.

Here you could specify a bigger --batch_size for faster inference based on your GPU memory. Note that the --eval_mode argument should be consistent with the --train_mode used in the training process. If you are using --eval_mode=rcnn_offline, then you should use --rcnn_eval_roi_dir and --rcnn_eval_feature_dir to specify the saved features and proposals of the validation set. Please refer to the training section for more details.

Training

Currently, the two stages of PointRCNN are trained separately. Firstly, to use the ground truth sampling data augmentation for training, we should generate the ground truth database as follows:

python generate_gt_database.py --class_name 'Car' --split train

Training of RPN stage

  • To train the first proposal generation stage of PointRCNN with a single GPU, run the following command:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200
  • To use mutiple GPUs for training, simply add the --mgpus argument as follows:
CUDA_VISIBLE_DEVICES=0,1 python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200 --mgpus

After training, the checkpoints and training logs will be saved to the corresponding directory according to the name of your configuration file. Such as for the default.yaml, you could find the checkpoints and logs in the following directory:

PointRCNN/output/rpn/default/

which will be used for the training of RCNN stage.

Training of RCNN stage

Suppose you have a well-trained RPN model saved at output/rpn/default/ckpt/checkpoint_epoch_200.pth, then there are two strategies to train the second stage of PointRCNN.

(a) Train RCNN network with fixed RPN network to use online GT augmentation: Use --rpn_ckpt to specify the path of a well-trained RPN model and run the command as follows:

python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn --epochs 70  --ckpt_save_interval 2 --rpn_ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth

(b) Train RCNN network with offline GT augmentation:

  1. Generate the augmented offline scenes by running the following command:
python generate_aug_scene.py --class_name Car --split train --aug_times 4
  1. Save the RPN features and proposals by adding --save_rpn_feature:
  • To save features and proposals for the training, we set TEST.RPN_POST_NMS_TOP_N=300 and TEST.RPN_NMS_THRESH=0.85 as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature --set TEST.SPLIT train_aug TEST.RPN_POST_NMS_TOP_N 300 TEST.RPN_NMS_THRESH 0.85
  • To save features and proposals for the evaluation, we keep TEST.RPN_POST_NMS_TOP_N=100 and TEST.RPN_NMS_THRESH=0.8 as default:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature
  1. Now we could train our RCNN network. Note that you should modify TRAIN.SPLIT=train_aug to use the augmented scenes for the training, and use --rcnn_training_roi_dir and --rcnn_training_feature_dir to specify the saved features and proposals in the above step:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn_offline --epochs 30  --ckpt_save_interval 1 --rcnn_training_roi_dir ../output/rpn/default/eval/epoch_200/train_aug/detections/data --rcnn_training_feature_dir ../output/rpn/default/eval/epoch_200/train_aug/features

For the offline GT sampling augmentation, the default setting to train the RCNN network is RCNN.ROI_SAMPLE_JIT=True, which means that we sample the RoIs and calculate their GTs in the GPU. I also provide the CPU version proposal sampling, which is implemented in the dataloader, and you could enable this feature by setting RCNN.ROI_SAMPLE_JIT=False. Typically the CPU version is faster but costs more CPU resources since they use mutiple workers.

All the codes supported mutiple GPUs, simply add the --mgpus argument as above. And you could also increase the --batch_size by using multiple GPUs for training.

Note:

  • The strategy (a), online augmentation, is more elegant and easy to train.
  • The best model is trained by the offline augmentation strategy with CPU proposal sampling (set RCNN.ROI_SAMPLE_JIT=False).
  • Theoretically, the online augmentation should be better, but currently the online augmentation is a bit lower than the offline augmentation, and I still didn't know why. All discussions are welcomed.
  • I am still working on this codes to make it more stable.

Citation

If you find this work useful in your research, please consider cite:

@InProceedings{Shi_2019_CVPR,
    author = {Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}
Owner
Shaoshuai Shi
Ph.D @ MMLab-CUHK
Shaoshuai Shi
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022