PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Overview

PointRCNN

PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

teaser

Code release for the paper PointRCNN:3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

Authors: Shaoshuai Shi, Xiaogang Wang, Hongsheng Li.

[arXiv]  [Project Page] 

New: We have provided another implementation of PointRCNN for joint training with multi-class in a general 3D object detection toolbox [OpenPCDet].

Introduction

In this work, we propose the PointRCNN 3D object detector to directly generated accurate 3D box proposals from raw point cloud in a bottom-up manner, which are then refined in the canonical coordinate by the proposed bin-based 3D box regression loss. To the best of our knowledge, PointRCNN is the first two-stage 3D object detector for 3D object detection by using only the raw point cloud as input. PointRCNN is evaluated on the KITTI dataset and achieves state-of-the-art performance on the KITTI 3D object detection leaderboard among all published works at the time of submission.

For more details of PointRCNN, please refer to our paper or project page.

Supported features and ToDo list

  • Multiple GPUs for training
  • GPU version rotated NMS
  • Faster PointNet++ inference and training supported by Pointnet2.PyTorch
  • PyTorch 1.0
  • TensorboardX
  • Still in progress

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 3.6+
  • PyTorch 1.0

Install PointRCNN

a. Clone the PointRCNN repository.

git clone --recursive https://github.com/sshaoshuai/PointRCNN.git

If you forget to add the --recursive parameter, just run the following command to clone the Pointnet2.PyTorch submodule.

git submodule update --init --recursive

b. Install the dependent python libraries like easydict,tqdm, tensorboardX etc.

c. Build and install the pointnet2_lib, iou3d, roipool3d libraries by executing the following command:

sh build_and_install.sh

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

PointRCNN
├── data
│   ├── KITTI
│   │   ├── ImageSets
│   │   ├── object
│   │   │   ├──training
│   │   │      ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │   ├──testing
│   │   │      ├──calib & velodyne & image_2
├── lib
├── pointnet2_lib
├── tools

Here the images are only used for visualization and the road planes are optional for data augmentation in the training.

Pretrained model

You could download the pretrained model(Car) of PointRCNN from here(~15MB), which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance on validation set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:96.91, 89.53, 88.74
bev  AP:90.21, 87.89, 85.51
3d   AP:89.19, 78.85, 77.91
aos  AP:96.90, 89.41, 88.54

Quick demo

You could run the following command to evaluate the pretrained model (set RPN.LOC_XZ_FINE=False since it is a little different with the default configuration):

python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt PointRCNN.pth --batch_size 1 --eval_mode rcnn --set RPN.LOC_XZ_FINE False

Inference

  • To evaluate a single checkpoint, run the following command with --ckpt to specify the checkpoint to be evaluated:
python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt ../output/rpn/ckpt/checkpoint_epoch_200.pth --batch_size 4 --eval_mode rcnn 
  • To evaluate all the checkpoints of a specific training config file, add the --eval_all argument, and run the command as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --eval_mode rcnn --eval_all
  • To generate the results on the test split, please modify the TEST.SPLIT=TEST and add the --test argument.

Here you could specify a bigger --batch_size for faster inference based on your GPU memory. Note that the --eval_mode argument should be consistent with the --train_mode used in the training process. If you are using --eval_mode=rcnn_offline, then you should use --rcnn_eval_roi_dir and --rcnn_eval_feature_dir to specify the saved features and proposals of the validation set. Please refer to the training section for more details.

Training

Currently, the two stages of PointRCNN are trained separately. Firstly, to use the ground truth sampling data augmentation for training, we should generate the ground truth database as follows:

python generate_gt_database.py --class_name 'Car' --split train

Training of RPN stage

  • To train the first proposal generation stage of PointRCNN with a single GPU, run the following command:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200
  • To use mutiple GPUs for training, simply add the --mgpus argument as follows:
CUDA_VISIBLE_DEVICES=0,1 python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 16 --train_mode rpn --epochs 200 --mgpus

After training, the checkpoints and training logs will be saved to the corresponding directory according to the name of your configuration file. Such as for the default.yaml, you could find the checkpoints and logs in the following directory:

PointRCNN/output/rpn/default/

which will be used for the training of RCNN stage.

Training of RCNN stage

Suppose you have a well-trained RPN model saved at output/rpn/default/ckpt/checkpoint_epoch_200.pth, then there are two strategies to train the second stage of PointRCNN.

(a) Train RCNN network with fixed RPN network to use online GT augmentation: Use --rpn_ckpt to specify the path of a well-trained RPN model and run the command as follows:

python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn --epochs 70  --ckpt_save_interval 2 --rpn_ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth

(b) Train RCNN network with offline GT augmentation:

  1. Generate the augmented offline scenes by running the following command:
python generate_aug_scene.py --class_name Car --split train --aug_times 4
  1. Save the RPN features and proposals by adding --save_rpn_feature:
  • To save features and proposals for the training, we set TEST.RPN_POST_NMS_TOP_N=300 and TEST.RPN_NMS_THRESH=0.85 as follows:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature --set TEST.SPLIT train_aug TEST.RPN_POST_NMS_TOP_N 300 TEST.RPN_NMS_THRESH 0.85
  • To save features and proposals for the evaluation, we keep TEST.RPN_POST_NMS_TOP_N=100 and TEST.RPN_NMS_THRESH=0.8 as default:
python eval_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --eval_mode rpn --ckpt ../output/rpn/default/ckpt/checkpoint_epoch_200.pth --save_rpn_feature
  1. Now we could train our RCNN network. Note that you should modify TRAIN.SPLIT=train_aug to use the augmented scenes for the training, and use --rcnn_training_roi_dir and --rcnn_training_feature_dir to specify the saved features and proposals in the above step:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn_offline --epochs 30  --ckpt_save_interval 1 --rcnn_training_roi_dir ../output/rpn/default/eval/epoch_200/train_aug/detections/data --rcnn_training_feature_dir ../output/rpn/default/eval/epoch_200/train_aug/features

For the offline GT sampling augmentation, the default setting to train the RCNN network is RCNN.ROI_SAMPLE_JIT=True, which means that we sample the RoIs and calculate their GTs in the GPU. I also provide the CPU version proposal sampling, which is implemented in the dataloader, and you could enable this feature by setting RCNN.ROI_SAMPLE_JIT=False. Typically the CPU version is faster but costs more CPU resources since they use mutiple workers.

All the codes supported mutiple GPUs, simply add the --mgpus argument as above. And you could also increase the --batch_size by using multiple GPUs for training.

Note:

  • The strategy (a), online augmentation, is more elegant and easy to train.
  • The best model is trained by the offline augmentation strategy with CPU proposal sampling (set RCNN.ROI_SAMPLE_JIT=False).
  • Theoretically, the online augmentation should be better, but currently the online augmentation is a bit lower than the offline augmentation, and I still didn't know why. All discussions are welcomed.
  • I am still working on this codes to make it more stable.

Citation

If you find this work useful in your research, please consider cite:

@InProceedings{Shi_2019_CVPR,
    author = {Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}
Owner
Shaoshuai Shi
Ph.D @ MMLab-CUHK
Shaoshuai Shi
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022