Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

Overview

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations

Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital

framework

Introduction

This repository contains the implementation of our TearingNet paper accepted in CVPR 2021. Given a point cloud dataset containing objects with various genera, or scenes with multiple objects, we propose the TearingNet, which is an autoencoder tackling the challenging task of representing the point clouds using a fixed-length descriptor. Unlike existing works directly deforming predefined primitives of genus zero (e.g., a 2D square patch) to an object-level point cloud, our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively. Particularly, the Tearing network module learns the point cloud topology explicitly. By breaking the edges of a primitive graph, it tears the graph into patches or with holes to emulate the topology of a target point cloud, leading to faithful reconstructions.

Installation

  • We use Python 3.6, PyTorch 1.3.1 and CUDA 10.0, example commands to set up a virtual environment with anaconda are:
conda create tearingnet python=3.6
conda activate tearingnet
conda install pytorch=1.3.1 torchvision=0.4.2 cudatoolkit=10.0 -c pytorch 
conda install -c open3d-admin open3d
conda install -c conda-forge tensorboardx
conda install -c anaconda h5py

Data Preparation

KITTI Multi-Object Dataset

  • Our KITTI Multi-Object (KIMO) Dataset is constructed with kitti_dataset.py of PCDet (commit 95d2ab5). Please clone and install PCDet, then prepare the KITTI dataset according to their instructions.
  • Assume the name of the cloned folder is PCDet, please replace the create_groundtruth_database() function in kitti_dataset.py by our modified one provided in TearingNet/util/pcdet_create_grouth_database.py.
  • Prepare the KITTI dataset, then generate the data infos according to the instructions in the README.md of PCDet.
  • Create the folders TearingNet/dataset and TearingNet/dataset/kittimulobj then put the newly-generated folder PCDet/data/kitti/kitti_single under TearingNet/dataset/kittimulobj. Also, put the newly-generated file PCDet/data/kitti/kitti_dbinfos_object.pkl under the TearingNet/dataset/kittimulobj folder.
  • Instead of assembling several single-object point clouds together and write down as a multi-object point cloud, we generate the parameters that parameterize the multi-object point clouds then assemble them on the fly during training/testing. To obtain the parameters, run our prepared scripts as follows under the TearingNet folder. These scripts generate the training and testing splits of the KIMO-5 dataset:
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_test_5x5.sh
  • The file structure of the KIMO dataset after these steps becomes:
kittimulobj
      ├── kitti_dbinfos_object.pkl
      ├── kitti_mulobj_param_test_5x5_2048.pkl
      ├── kitti_mulobj_param_train_5x5_2048.pkl
      └── kitti_single
              ├── 0_0_Pedestrian.bin
              ├── 1000_0_Car.bin
              ├── 1000_1_Car.bin
              ├── 1000_2_Van.bin
              ...

CAD Model Multi-Object Dataset

dataset
    ├── cadmulobj
    ├── kittimulobj
    ├── modelnet40
    │       └── modelnet40_ply_hdf5_2048
    │                   ├── ply_data_test0.h5
    │                   ├── ply_data_test_0_id2file.json
    │                   ├── ply_data_test1.h5
    │                   ├── ply_data_test_1_id2file.json
    │                   ...
    └── shapenet_part
            ├── shapenetcore_partanno_segmentation_benchmark_v0
            │   ├── 02691156
            │   │   ├── points
            │   │   │   ├── 1021a0914a7207aff927ed529ad90a11.pts
            │   │   │   ├── 103c9e43cdf6501c62b600da24e0965.pts
            │   │   │   ├── 105f7f51e4140ee4b6b87e72ead132ed.pts
            ...
  • Extract the "person", "car", "cone" and "plant" models from ModelNet40, and the "motorbike" models from the ShapeNet part dataset, by running the following Python script under the TearingNet folder:
python util/cad_models_collector.py
  • The previous step generates the file TearingNet/dataset/cadmulobj/cad_models.npy, based on which we generate the parameters for the CAMO dataset. To do so, launch the following scripts:
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_test_5x5.sh
  • The file structure of the CAMO dataset after these steps becomes:
cadmulobj
    ├── cad_models.npy
    ├── cad_mulobj_param_test_5x5.npy
    └── cad_mulobj_param_train_5x5.npy

Experiments

Training

We employ a two-stage training strategy to train the TearingNet. The first step is to train a FoldingNet (E-Net & F-Net in paper). Take the KIMO dataset as an example, launch the following scripts under the TearingNet folder:

./scripts/launch.sh ./scripts/experiments/train_folding_kitti.sh

Having finished the first step, a pretrained model will be saved in TearingNet/results/train_folding_kitti. To load the pretrained FoldingNet into a TearingNet configuration and perform training, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/train_tearing_kitti.sh

To see the meanings of the parameters in train_folding_kitti.sh and train_tearing_kitti.sh, check the Python script TearinNet/util/option_handler.py.

Reconstruction

To perform the reconstruction experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/reconstruction.sh

One may write down the reconstructions in PLY format by setting a positive PC_WRITE_FREQ value. Again, please refer to TearinNet/util/option_handler.py for the meanings of individual parameters.

Counting

To perform the counting experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/counting.sh

Citing this Work

Please cite our work if you find it useful for your research:

@inproceedings{pang2021tearingnet, 
    title={TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations}, 
    author={Pang, Jiahao and Li, Duanshun, and Tian, Dong}, 
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2021}
}

Related Projects

torus interpolation

Owner
InterDigital
InterDigital
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021