Honours project, on creating a depth estimation map from two stereo images of featureless regions

Overview

image-processing

This module generates depth maps for shape-blocked-out images

Install

If working with anaconda, then from the root directory:

conda env create --file environment.yml
conda activate image-processing

Otherwise, if python 3 is installed, pip can be used to ensure the required packages are available. From the root directory, run

pip install -r requirements.txt

Files

The core functional files are collection.py, image.py, shape.py, edge.py, segment.py. They each contain a class of the same name. They logically follow this order and encapsulate each other, so collection creates three image objects for the left, center and right images. Each image object creates a number of shape objects. Shape objects create edge objects. Edge objects create segment objects. helper.py contains assisting functions used by these various classes.

This design aids in splitting up all the information and processes necessary to perform the desired function and logically groups it to ease comprehension. Each ought to be well-commented enough to generally understand what each part is doing.

The only one intended to be accessed to retrieve depth maps is collection.py as it orchestrates the entire process.

Usage

Both main.py and auto_gen.py are designed to access collection and to have it create depth maps. They require the initial images to be stored within a directory in assets/ , and each with three further subdirectories, cameraLeft/, cameraCenter/, and cameraRight/ . They save their results to saves/ with the generated images being stored in saves/generated/ . All .img files are object-files generated during this process to reduce the workload needed the next time the same process is executed.

Main

main.py is for individual depth map generation. There are four arguments able to be passed to specify details to the execution.

  1. The directory name desired from within assets/ .
  2. The numerical index (starting at 0) of the specific image desired within the innermost subdirectories
  3. The number representing which image should the depth map visual be based on (0 for left, 1 for center, 2 for right)
  4. Should the resulting depth image be saved
  5. Should the resulting depth image be displayed

While it can take up to these four arguments, no arguments is also possible. Then, the directory within assets/ is randomly selected, as is the index of the image set, and which image is used to generate the depth map visual. It will save and display the results. Partial arguments is also fine, so long as order is maintained.

Example: To display on the left image but not save occluded_road's first image set

python main.py occluded_road 0 0 False True

note: the last argument, True, is redundant in this case
 
Example: Any road_no_occlusion image set, any image used to create the depth map visual (automatically will save and display)

python main.py road_no_occlusion

 

Example: Anything (automatically will save and display)

python main.py

 

The value of having it execute a certain image when its depth image has already been generated is that it will quickly pull it up in the viewer and unlike the static image one can view the individual pixel values the mouse hovers over in the top-right corner.

 

Auto_gen

Alternatively, auto_gen.py is intended for the automated creation of all depth map images.

python auto_gen.py

By simply executing it, it will determine the depth map image all image sets and save them all. The terminal output is saved to a txt file stored in saves/logs. It does not display the results, as that would greatly heed the process of creating all of the results.

Alternatively, it can take two arguments.

  1. Specifies a directory within assets/ to use rather than executing for all of them, similar to the first argument for main.py
  2. Specifies the image to be used as the basis for the depth map visual, similar to the third argument for main.py (0-2 for left, center, and right)

Example: All depth images

python auto_gen.py

 
Example: All Shape_based_stereoPairs depth images using the right image

python auto_gen.py Shape_based_stereoPairs 2

 

For both, if an existing depth map exists, it will not be redone even if the image expected to be used is different. To do so, remove both the .jpg and .img and re-run.

How it works

 

Initialization

Upon creation of an instance of collection, it first intantiates the left image's Image intance. The shape colours are determined and then each shape is instantiated. The bounding box of the given shape is determined as well as its left and right edges, and their segments.

Collection uses the colours determined by the left Image to speed up the other two image's instantiations.

After everything has been created, the segments of each edge, of each shape, in each image must be assigned. First this process requires determining the displacement of edges, which is then used to determine which shape owns and doesn't own which segment.

Generally at this stage all but a few stragglers are assigned. The remaining are due to shapes having few edges, and the only one it could own is shared with the ground or sky shape, and thus difficult to tell which owns it. Using additional information about the shapes ownership is assigned. Finally, it checks to see if any shapes are the ground or sky, as their depths are not calculated.

At this stage, the image objects are saved.

Depth calculation

Then, using this information about the edges of a shape, its depth can be more accurately calculated. Only edges it owns are used to determine its depth. So if it only has its right side, only the right edge is used. Alternatively if both are owned, the midpoint is used.

However, if the shape is determined to have a varying depth, then its depth can alternatively be calculated using the change of slope between the images.

Finally, once all depth values are found, a modified version of the original image is created with its shape colours replaced with their determined depth values, the sky is replaced with pure black, and the ground with pure white. This image is then possibly saved and possibly displayed. Which image is used to re-colour for the depth map depends on either a given argument or random selection.

WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022