Kindle is an easy model build package for PyTorch.

Overview

Kindle - PyTorch no-code model builder

PyPI - Python Version PyTorch Version GitHub Workflow Status PyPI LGTM Alerts

Documentation
API reference

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.

Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.

Contents

Installation

Install with pip

PyTorch is required prior to install. Please visit PyTorch installation guide to install.

You can install kindle by pip.

$ pip install kindle

Install from source

Please visit Install from source wiki page

For contributors

Please visit For contributors wiki page

Usage

Build a model

  1. Make model yaml file
input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Conv, [16, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  1. Build the model with kindle
from kindle import Model

model = Model("model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,232 |            Conv |        [16, 5, 1, 0] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 21 layers, 137,862 parameters, 137,862 gradients

AutoML with Kindle

  • Kindle offers the easiest way to build your own deep learning architecture. Beyond building a model, AutoML became easier with Kindle and Optuna or other optimization frameworks.
  • For further information, please refer to here

Supported modules

  • Detailed documents can be found here
Module Components Arguments
Conv Conv -> BatchNorm -> Activation [channel, kernel size, stride, padding, activation]
DWConv DWConv -> BatchNorm -> Activation [channel, kernel_size, stride, padding, activation]
Bottleneck Expansion ConvBNAct -> ConvBNAct [channel, shortcut, groups, expansion, activation]
AvgPool Average pooling [kernel_size, stride, padding]
MaxPool Max pooling [kernel_size, stride, padding]
GlobalAvgPool Global Average Pooling []
Flatten Flatten []
Concat Concatenation [dimension]
Linear Linear [channel, activation]
Add Add []

Custom module support

Custom module with yaml

You can make your own custom module with yaml file.

1. custom_module.yaml

args: [96, 32]

module:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [arg0, 1, 1]],
        [0, 1, Conv, [arg1, 3, 1]],
        [0, 1, Conv, [arg1, 5, 1]],
        [0, 1, Conv, [arg1, 7, 1]],
        [[1, 2, 3], 1, Concat, [1]],
        [[0, 4], 1, Add, []],
    ]
  • Arguments of yaml module can be defined as arg0, arg1 ...

2. model_with_custom_module.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, YamlModule, ["custom_module.yaml", 48, 16]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  • Note that argument of yaml module can be provided.

3. Build model

from kindle import Model

model = Model("model_with_custom_module.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |     10,832 |      YamlModule |    ['custom_module'] |                      [8 16 16] |    [24, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [24 16 16] |      [24, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [24 8 8] |          [1536] |
  5 |         -1 |   1 |    184,440 |          Linear |        [120, 'ReLU'] |                         [1536] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 36 layers, 206,902 parameters, 206,902 gradients

Custom module from source

You can make your own custom module from the source.

1. custom_module_model.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

custom_module_paths: ["tests.test_custom_module"]  # Paths to the custom modules of the source

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, MyConv, [6, 5, 3]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, MyConv, [16, 3, 5, SiLU]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]

2. Write PyTorch module and ModuleGenerator

tests/test_custom_module.py

from typing import List, Union

import numpy as np
import torch
from torch import nn

from kindle.generator import GeneratorAbstract
from kindle.torch_utils import Activation, autopad


class MyConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        n: int,
        activation: Union[str, None] = "ReLU",
    ) -> None:
        super().__init__()
        convs = []
        for i in range(n):
            convs.append(
                nn.Conv2d(
                    in_channels,
                    in_channels if (i + 1) != n else out_channels,
                    kernel_size,
                    padding=autopad(kernel_size),
                    bias=False,
                )
            )

        self.convs = nn.Sequential(*convs)
        self.batch_norm = nn.BatchNorm2d(out_channels)
        self.activation = Activation(activation)()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.activation(self.batch_norm(self.convs(x)))


class MyConvGenerator(GeneratorAbstract):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @property
    def out_channel(self) -> int:
        return self._get_divisible_channel(self.args[0] * self.width_multiply)

    @property
    def in_channel(self) -> int:
        if isinstance(self.from_idx, list):
            raise Exception("from_idx can not be a list.")
        return self.in_channels[self.from_idx]

    @torch.no_grad()
    def compute_out_shape(self, size: np.ndarray, repeat: int = 1) -> List[int]:
        module = self(repeat=repeat)
        module.eval()
        module_out = module(torch.zeros([1, *list(size)]))
        return list(module_out.shape[-3:])

    def __call__(self, repeat: int = 1) -> nn.Module:
        args = [self.in_channel, self.out_channel, *self.args[1:]]
        if repeat > 1:
            module = [MyConv(*args) for _ in range(repeat)]
        else:
            module = MyConv(*args)

        return self._get_module(module)

3. Build a model

from kindle import Model

model = Model("custom_module_model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |      1,066 |          MyConv |            [6, 5, 3] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,488 |          MyConv |   [16, 3, 5, 'SiLU'] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 29 layers, 138,568 parameters, 138,568 gradients

Planned features

  • Custom module support
  • Custom module with yaml support
  • Use pre-trained model
  • More modules!
Owner
Jongkuk Lim
Deep Learning, Machine Learning, Data Science, Edge Computing, Fitness Enthusiast
Jongkuk Lim
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022