Learning Logic Rules for Document-Level Relation Extraction

Related tags

Deep LearningLogiRE
Overview

LogiRE

Learning Logic Rules for Document-Level Relation Extraction

We propose to introduce logic rules to tackle the challenges of doc-level RE.

Equipped with logic rules, our LogiRE framework can not only explicitly capture long-range semantic dependencies, but also show more interpretability.

We combine logic rules and outputs of neural networks for relation extraction.

drawing

As shown in the example, the relation between kate and Britain can be identified according to the other relations and the listed logic rule.

The overview of LogiRE framework is shown below.

drawing

Data

  • Download the preprocessing script and meta data

    DWIE
    ├── data
    │   ├── annos
    │   └── annos_with_content
    ├── en_core_web_sm-2.3.1
    │   ├── build
    │   ├── dist
    │   ├── en_core_web_sm
    │   ├── en_core_web_sm.egg-info
    │   ├── MANIFEST.in
    │   ├── meta.json
    │   ├── PKG-INFO
    │   ├── setup.cfg
    │   └── setup.py
    ├── glove.6B.100d.txt
    ├── md5sum.txt
    └── read_docred_style.py
    
  • Install Spacy (en_core_web_sm-2.3.1)

    cd en_core_web_sm-2.3.1
    pip install .
  • Download the original data from DWIE

  • Generate docred-style data

    python3 read_docred_style.py

    The docred-style doc-RE data will be generated at DWIE/data/docred-style. Please compare the md5sum codes of generated files with the records in md5sum.txt to make sure you generate the data correctly.

Train & Eval

Requirements

  • pytorch >= 1.7.1
  • tqdm >= 4.62.3
  • transformers >= 4.4.2

Backbone Preparation

The LogiRE framework requires a backbone NN model for the initial probabilistic assessment on each triple.

The probabilistic assessments of the backbone model and other related meta data should be organized in the following format. In other words, please train any doc-RE model with the docred-style RE data before and dump the outputs as below.

{
    'train': [
        {
            'N': <int>,
            'logits': <torch.FloatTensor of size (N, N, R)>,
            'labels': <torch.BoolTensor of size (N, N, R)>,
            'in_train': <torch.BoolTensor of size (N, N, R)>,
        },
        ...
    ],
    'dev': [
        ...
    ]
    'test': [
        ...
    ]
}

Each example contains four items:

  • N: the number of entities in this example.
  • logits: the logits of all triples as a tensor of size (N, N, R). R is the number of relation types (Na excluded)
  • labels: the labels of all triples as a tensor of size (N, N, R).
  • in_train: the in_train masks of all triples as a tensor of size(N, N, R), used for ign f1 evaluation. True indicates the existence of the triple in the training split.

For convenience, we provide the dump of ATLOP as examples. Feel free to download and try it directly.

Train

python3 main.py --mode train \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Evaluation

python3 main.py --mode test \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Results

  • LogiRE framework outperforms strong baselines on both relation performance and logical consistency.

    drawing
  • Injecting logic rules can improve long-range dependencies modeling, we show the relation performance on each interval of different entity pair distances. LogiRE framework outperforms the baseline and the gap becomes larger when entity pair distances increase. Logic rules actually serve as shortcuts for capturing long-range semantics in concept-level instead of token-level.

    drawing

Acknowledgements

We sincerely thank RNNLogic which largely inspired us and DWIE & DocRED for providing the benchmarks.

Reference

@inproceedings{ru-etal-2021-learning,
    title = "Learning Logic Rules for Document-Level Relation Extraction",
    author = "Ru, Dongyu  and
      Sun, Changzhi  and
      Feng, Jiangtao  and
      Qiu, Lin  and
      Zhou, Hao  and
      Zhang, Weinan  and
      Yu, Yong  and
      Li, Lei",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.95",
    pages = "1239--1250",
}
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022