The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

Overview

SCOOD-UDG (ICCV 2021)

paper   projectpage   gdrive  onedrive

This repository is the official implementation of the paper:

Semantically Coherent Out-of-Distribution Detection
Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, Ziwei Liu
Proceedings of the IEEE International Conference on Computer Vision (ICCV 2021)

udg

Dependencies

We use conda to manage our dependencies, and CUDA 10.1 to run our experiments.

You can specify the appropriate cudatoolkit version to install on your machine in the environment.yml file, and then run the following to create the conda environment:

conda env create -f environment.yml
conda activate scood

SC-OOD Dataset

scood

The SC-OOD dataset introduced in the paper can be downloaded here.

gdrive onedrive

Our codebase accesses the dataset from the root directory in a folder named data/ by default, i.e.

├── ...
├── data
│   ├── images
│   └── imglist
├── scood
├── test.py
├── train.py
├── ...

Training

The entry point for training is the train.py script. The hyperparameters for each experiment is specified by a .yml configuration file (examples given in configs/train/).

All experiment artifacts are saved in the specified args.output_dir directory.

python train.py \
    --config configs/train/cifar10_udg.yml \
    --data_dir data \
    --output_dir output/cifar10_udg

Testing

Evaluation for a trained model is performed by the test.py script, with its hyperparameters also specified by a .yml configuration file (examples given in configs/test/)

Within the configuration file, you can also specify which post-processing OOD method to use (e.g. ODIN or Energy-based OOD detector (EBO)).

The evaluation results are saved in a .csv file as specified.

python test.py \
    --config configs/test/cifar10.yml \
    --checkpoint output/cifar10_udg/best.ckpt \
    --data_dir data \
    --csv_path output/cifar10_udg/results.csv

Results

CIFAR-10 (+ Tiny-ImageNet) Results on ResNet18

You can run the following script (specifying the data and output directories) which perform training + testing for our main experimental results:

CIFAR-10, UDG

bash scripts/cifar10_udg.sh data_dir output_dir

We report the mean ± std results from the current codebase as follows, which match the performance reported in our original paper.

Metrics ODIN EBO OE UDG (ours)
FPR95 ↓ 50.76 ± 3.39 50.70 ± 2.86 54.99 ± 4.06 39.94 ± 3.77
AUROC ↑ 82.11 ± 0.24 83.99 ± 1.05 87.48 ± 0.61 93.27 ± 0.64
AUPR In ↑ 73.07 ± 0.40 76.84 ± 1.56 85.75 ± 1.70 93.36 ± 0.56
AUPR Out ↑ 85.06 ± 0.29 85.44 ± 0.73 86.95 ± 0.28 91.21 ± 1.23
[email protected] 0.30 ± 0.04 0.26 ± 0.09 7.09 ± 0.48 16.36 ± 4.33
[email protected] 1.22 ± 0.28 1.46 ± 0.18 13.69 ± 0.78 32.99 ± 4.16
[email protected] 6.13 ± 0.72 8.17 ± 0.96 29.60 ± 5.31 59.14 ± 2.60
[email protected] 39.61 ± 0.72 47.57 ± 3.33 64.33 ± 3.44 81.04 ± 1.46

License and Acknowledgements

This project is open-sourced under the MIT license.

The codebase is refactored by Ang Yi Zhe, and maintained by Jingkang Yang and Ang Yi Zhe.

Citation

If you find our repository useful for your research, please consider citing our paper:

@InProceedings{yang2021scood,
    author = {Yang, Jingkang and Wang, Haoqi and Feng, Litong and Yan, Xiaopeng and Zheng, Huabin and Zhang, Wayne and Liu, Ziwei},
    title = {Semantically Coherent Out-of-Distribution Detection},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year = {2021}
}
Owner
Jake YANG
[email protected] PhD Student
Jake YANG
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022