Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Overview

Spatial-Temporal Transformer for Dynamic Scene Graph Generation

Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Graph Generation accepted by ICCV2021. We propose a Transformer-based model STTran to generate dynamic scene graphs of the given video. STTran can detect the visual relationships in each frame.

The introduction video is available now: https://youtu.be/gKpnRU8btLg

GitHub Logo

About the code We run the code on a single RTX2080ti for both training and testing. We borrowed some code from Yang's repository and Zellers' repository.

Usage

We use python=3.6, pytorch=1.1 and torchvision=0.3 in our code. First, clone the repository:

git clone https://github.com/yrcong/STTran.git

We borrow some compiled code for bbox operations.

cd lib/draw_rectangles
python setup.py build_ext --inplace
cd ..
cd fpn/box_intersections_cpu
python setup.py build_ext --inplace

For the object detector part, please follow the compilation from https://github.com/jwyang/faster-rcnn.pytorch We provide a pretrained FasterRCNN model for Action Genome. Please download here and put it in

fasterRCNN/models/faster_rcnn_ag.pth

Dataset

We use the dataset Action Genome to train/evaluate our method. Please process the downloaded dataset with the Toolkit. The directories of the dataset should look like:

|-- action_genome
    |-- annotations   #gt annotations
    |-- frames        #sampled frames
    |-- videos        #original videos

In the experiments for SGCLS/SGDET, we only keep bounding boxes with short edges larger than 16 pixels. Please download the file object_bbox_and_relationship_filtersmall.pkl and put it in the dataloader

Train

You can train the STTran with train.py. We trained the model on a RTX 2080ti:

  • For PredCLS:
python train.py -mode predcls -datasize large -data_path $DATAPATH 
  • For SGCLS:
python train.py -mode sgcls -datasize large -data_path $DATAPATH 
  • For SGDET:
python train.py -mode sgdet -datasize large -data_path $DATAPATH 

Evaluation

You can evaluate the STTran with test.py.

python test.py -m predcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgdet -datasize large -data_path $DATAPATH -model_path $MODELPATH

Citation

If our work is helpful for your research, please cite our publication:

@inproceedings{cong2021spatial,
  title={Spatial-Temporal Transformer for Dynamic Scene Graph Generation},
  author={Cong, Yuren and Liao, Wentong and Ackermann, Hanno and Rosenhahn, Bodo and Yang, Michael Ying},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year={2021}
  url={https://arxiv.org/abs/2107.12309}
}

Help

When you have any question/idea about the code/paper. Please comment in Github or send us Email. We will reply as soon as possible.

Owner
Yuren Cong
Yuren Cong
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022