Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Overview

Spatial-Temporal Transformer for Dynamic Scene Graph Generation

Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Graph Generation accepted by ICCV2021. We propose a Transformer-based model STTran to generate dynamic scene graphs of the given video. STTran can detect the visual relationships in each frame.

The introduction video is available now: https://youtu.be/gKpnRU8btLg

GitHub Logo

About the code We run the code on a single RTX2080ti for both training and testing. We borrowed some code from Yang's repository and Zellers' repository.

Usage

We use python=3.6, pytorch=1.1 and torchvision=0.3 in our code. First, clone the repository:

git clone https://github.com/yrcong/STTran.git

We borrow some compiled code for bbox operations.

cd lib/draw_rectangles
python setup.py build_ext --inplace
cd ..
cd fpn/box_intersections_cpu
python setup.py build_ext --inplace

For the object detector part, please follow the compilation from https://github.com/jwyang/faster-rcnn.pytorch We provide a pretrained FasterRCNN model for Action Genome. Please download here and put it in

fasterRCNN/models/faster_rcnn_ag.pth

Dataset

We use the dataset Action Genome to train/evaluate our method. Please process the downloaded dataset with the Toolkit. The directories of the dataset should look like:

|-- action_genome
    |-- annotations   #gt annotations
    |-- frames        #sampled frames
    |-- videos        #original videos

In the experiments for SGCLS/SGDET, we only keep bounding boxes with short edges larger than 16 pixels. Please download the file object_bbox_and_relationship_filtersmall.pkl and put it in the dataloader

Train

You can train the STTran with train.py. We trained the model on a RTX 2080ti:

  • For PredCLS:
python train.py -mode predcls -datasize large -data_path $DATAPATH 
  • For SGCLS:
python train.py -mode sgcls -datasize large -data_path $DATAPATH 
  • For SGDET:
python train.py -mode sgdet -datasize large -data_path $DATAPATH 

Evaluation

You can evaluate the STTran with test.py.

python test.py -m predcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgdet -datasize large -data_path $DATAPATH -model_path $MODELPATH

Citation

If our work is helpful for your research, please cite our publication:

@inproceedings{cong2021spatial,
  title={Spatial-Temporal Transformer for Dynamic Scene Graph Generation},
  author={Cong, Yuren and Liao, Wentong and Ackermann, Hanno and Rosenhahn, Bodo and Yang, Michael Ying},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year={2021}
  url={https://arxiv.org/abs/2107.12309}
}

Help

When you have any question/idea about the code/paper. Please comment in Github or send us Email. We will reply as soon as possible.

Owner
Yuren Cong
Yuren Cong
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022