Ensembling Off-the-shelf Models for GAN Training

Overview

Vision-aided GAN

video (3m) | website | paper







Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN training? If so, with so many models to choose from, which one(s) should be selected, and in what manner are they most effective?

We find that pretrained computer vision models can significantly improve performance when used in an ensemble of discriminators. We propose an effective selection mechanism, by probing the linear separability between real and fake samples in pretrained model embeddings, choosing the most accurate model, and progressively adding it to the discriminator ensemble. Our method can improve GAN training in both limited data and large-scale settings.

Ensembling Off-the-shelf Models for GAN Training
Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu
arXiv 2112.09130, 2021

Quantitative Comparison


Our method outperforms recent GAN training methods by a large margin, especially in limited sample setting. For LSUN Cat, we achieve similar FID as StyleGAN2 trained on the full dataset using only $0.7%$ of the dataset. On the full dataset, our method improves FID by 1.5x to 2x on cat, church, and horse categories of LSUN.

Example Results

Below, we show visual comparisons between the baseline StyleGAN2-ADA and our model (Vision-aided GAN) for the same randomly sample latent code.

Interpolation Videos

Latent interpolation results of models trained with our method on AnimalFace Cat (160 images), Dog (389 images), and Bridge-of-Sighs (100 photos).


Requirements

  • 64-bit Python 3.8 and PyTorch 1.8.0 (or later). See https://pytorch.org/ for PyTorch install instructions.
  • Cuda toolkit 11.0 or later.
  • python libraries: see requirements.txt
  • StyleGAN2 code relies heavily on custom PyTorch extensions. For detail please refer to the repo stylegan2-ada-pytorch

Setting up Off-the-shelf Computer Vision models

CLIP(ViT): we modify the model.py function to return intermediate features of the transformer model. To set up follow these steps.

git clone https://github.com/openai/CLIP.git
cp vision-aided-gan/training/clip_model.py CLIP/clip/model.py
cd CLIP
python setup.py install

DINO(ViT): model is automatically downloaded from torch hub.

VGG-16: model is automatically downloaded.

Swin-T(MoBY): Create a pretrained-models directory and save the downloaded model there.

Swin-T(Object Detection): follow the below step for setup. Download the model here and save it in the pretrained-models directory.

git clone https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
cd Swin-Transformer-Object-Detection
pip install mmcv-full==1.3.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
python setup.py install

for more details on mmcv installation please refer here

Swin-T(Segmentation): follow the below step for setup. Download the model here and save it in the pretrained-models directory.

git clone https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation.git
cd Swin-Transformer-Semantic-Segmentation
python setup.py install

Face Parsing:download the model here and save in the pretrained-models directory.

Face Normals:download the model here and save in the pretrained-models directory.

Pretrained Models

Our final trained models can be downloaded at this link

To generate images:

python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 --network=<network.pkl>

The output is stored in out directory controlled by --outdir. Our generator architecture is same as styleGAN2 and can be similarly used in the Python code as described in stylegan2-ada-pytorch.

model evaluation:

python calc_metrics.py --network <network.pkl> --metrics fid50k_full --data <dataset> --clean 1

We use clean-fid library to calculate FID metric. For LSUN Church and LSUN Horse, we calclate the full real distribution statistics. For details on calculating the real distribution statistics, please refer to clean-fid. For default FID evaluation of StyleGAN2-ADA use clean=0.

Datasets

Dataset preparation is same as given in stylegan2-ada-pytorch. Example setup for LSUN Church

LSUN Church

git clone https://github.com/fyu/lsun.git
cd lsun
python3 download.py -c church_outdoor
unzip church_outdoor_train_lmdb.zip
cd ../vision-aided-gan
python dataset_tool.py --source <path-to>/church_outdoor_train_lmdb/ --dest <path-to-datasets>/church1k.zip --max-images 1000  --transform=center-crop --width=256 --height=256

datasets can be downloaded from their repsective websites:

FFHQ, LSUN Categories, AFHQ, AnimalFace Dog, AnimalFace Cat, 100-shot Bridge-of-Sighs

Training new networks

model selection: returns the computer vision model with highest linear probe accuracy for the best FID model in a folder or the given network file.

python model_selection.py --data mydataset.zip --network  <mynetworkfolder or mynetworkpklfile>

example training command for training with a single pretrained network from scratch

python train.py --outdir=training-models/ --data=mydataset.zip --gpus 2 --metrics fid50k_full --kimg 25000 --cfg paper256 --cv input-dino-output-conv_multi_level --cv-loss multilevel_s --augcv ada --ada-target-cv 0.3 --augpipecv bgc --batch 16 --mirror 1 --aug ada --augpipe bgc --snap 25 --warmup 1  

Training configuration corresponding to training with vision-aided-loss:

  • --cv=input-dino-output-conv_multi_level pretrained network and its configuration.
  • --warmup=0 should be enabled when training from scratch. Introduces our loss after training with 500k images.
  • --cv-loss=multilevel what loss to use on pretrained model based discriminator.
  • --augcv=ada performs ADA augmentation on pretrained model based discriminator.
  • --augcv=diffaugment-<policy> performs DiffAugment on pretrained model based discriminator with given poilcy.
  • --augpipecv=bgc ADA augmentation strategy. Note: cutout is always enabled.
  • --ada-target-cv=0.3 adjusts ADA target value for pretrained model based discriminator.
  • --exact-resume=0 enables exact resume along with optimizer state.

Miscellaneous configurations:

  • --appendname='' additional string to append to training directory name.
  • --wandb-log=0 enables wandb logging.
  • --clean=0 enables FID calculation using clean-fid if the real distribution statistics are pre-calculated.

Run python train.py --help for more details and the full list of args.

References

@article{kumari2021ensembling,
  title={Ensembling Off-the-shelf Models for GAN Training},
  author={Kumari, Nupur and Zhang, Richard and Shechtman, Eli and Zhu, Jun-Yan},
  journal={arXiv preprint arXiv:2112.09130},
  year={2021}
}

Acknowledgments

We thank Muyang Li, Sheng-Yu Wang, Chonghyuk (Andrew) Song for proofreading the draft. We are also grateful to Alexei A. Efros, Sheng-Yu Wang, Taesung Park, and William Peebles for helpful comments and discussion. Our codebase is built on stylegan2-ada-pytorch and DiffAugment.

Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022